Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):m1048–m1049. doi: 10.1107/S160053680802196X

Redetermination of poly[μ-chlorido-hepta­chlorido-μ3-l-proline-μ2-l-proline-tetra­mercury(II)]

D Kalaiselvi a, R Mohan Kumar b, R Jayavel a,*
PMCID: PMC2961966  PMID: 21203036

Abstract

The asymmetric unit of the title compound, [Hg4Cl8(C5H9NO2)2]n, consists of four HgCl2 units and two L-proline ligands in the zwitterionic form. In each HgCl2 unit, the HgII ion is strongly bonded to two Cl atoms, and the HgII ions in two of the HgCl2 units are chelated by O atoms of two l-proline ligands, with one strong and one weak Hg—O bond. In the crystal structure, HgCl2 and L-proline units are linked to form an extended chain along the a axis. The chain structure is further stabilized by N—H⋯Cl hydrogen bonds, and the chains are arranged in layers parallel to the ab plane. The structure of the title compound was originally determined by Ehsan, Malik & Haider [(1996). J. Banglad. Acad. Sci. 20, 175] but no three-dimensional coordinates are available.

Related literature

For related literature, see: Janczak & Luger (1997); Jiang & Fang (1999); Kurtz & Perry (1968); Long (1995); McL Mathieson & Welsh (1952); Nockemann & Meyer (2002); Padmanabhan et al. (1995); Pandiarajan et al. (2002a ,b ); Schaffers & Keszler (1993); Subha Nandhini et al. (2001); Tedmann et al. (2004); Yukawa et al. (1982, 1983, 1985); Ehsan et al. (1996).graphic file with name e-64-m1048-scheme1.jpg

Experimental

Crystal data

  • [Hg4Cl8(C5H9NO2)2]

  • M r = 1316.23

  • Triclinic, Inline graphic

  • a = 7.2742 (4) Å

  • b = 9.4472 (5) Å

  • c = 10.4767 (6) Å

  • α = 108.621 (3)°

  • β = 107.260 (2)°

  • γ = 97.353 (2)°

  • V = 631.51 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 25.10 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.082, T max = 0.188 (expected range = 0.035–0.081)

  • 10896 measured reflections

  • 3956 independent reflections

  • 3773 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.111

  • S = 1.03

  • 3956 reflections

  • 255 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −2.51 e Å−3

  • Absolute structure: Flack (1983), 1736 Friedel pairs

  • Flack parameter: 0.057 (16)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802196X/lh2640sup1.cif

e-64-m1048-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802196X/lh2640Isup2.hkl

e-64-m1048-Isup2.hkl (193.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

O4—Hg4 2.888 (10)
O4—Hg3 2.828 (11)
O2—Hg2 2.869 (13)
O1—Hg1 2.564 (11)
O1—Hg2 2.566 (12)
O3—Hg3 2.486 (13)
O3—Hg2 2.634 (12)
Cl1—Hg1 2.326 (6)
Cl2—Hg1 2.276 (6)
Cl3—Hg2 2.323 (6)
Cl4—Hg2 2.337 (6)
Cl5—Hg3 2.316 (6)
Cl6—Hg3 2.304 (6)
Cl7—Hg4 2.300 (6)
Cl8—Hg4 2.255 (7)
Hg1—Cl3i 3.009 (6)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl7i 0.90 2.63 3.282 (14) 130
N1—H1B⋯Cl6i 0.90 2.40 3.290 (16) 167
N2—H2A⋯Cl4ii 0.90 2.40 3.267 (15) 163
N2—H2B⋯Cl5ii 0.90 2.60 3.234 (15) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr K. Chinnakali, Department of Physics, Anna University, Chennai, for useful discussions and suggestions.

supplementary crystallographic information

Comment

During the last few years, organic non-linear optical (NLO) crystals have attracted much interest due to their superior properties over inorganic NLO materials, such as higher susceptibility, faster response and the capability of designing components on the molecular level. However, unlike inorganic NLO crystals, they have not come into wide use, owing to drawbacks such as the difficulty of growing large size perfect single crystals and poor physicochemical stability. Under these circumstances, crystals of metal-organic materials with NLO effects have been developed which are expected not only to retain high NLO effects, but also to minimize some of the shortcomings of pure organic crystals; in other words, they have the advantages of both organic and inorganic crystals in terms of their physicochemical properties. This approach has resulted in their practical use in frequency-doubling of laser radiation (Long, 1995; Jiang & Fang, 1999). The crystal structure of L-proline monohydrate (Janczak & Luger, 1997), DL-proline monohydrate (Padmanabhan et al., 1995), L-prolinium tartrate (Subha Nandhini et al.,2001), bis (L-proline) hydrogen (1+) perchlorate (Pandiarajan et al.,2002a), bis (L-proline) hydrogen nitrate (Pandiarajan et al., 2002b), L-alanine cadmium chloride (Schaffers & Keszler, 1993), dichloro(4-hydroxy-L-proline)cadmium(II) (Yukawa et al., 1982), dichloro(L-proline)cadmium(II) hydrate (Yukawa et al., 1983), dichlorobis(L-proline)Zinc(II) (Yukawa et al., 1985) and bis-DL-prolinatocopper(II)dihydrate (McL Mathieson & Welsh, 1952) have been reported. The present study reports the crystal structure of the title salt, a complex of L-proline with mercury chloride. The second harmonic generation (SHG) effect of the crystals was measured by the powder SHG technique (Kurtz & Perry, 1968) and was found to be 2.5 times that of potassium dihydrogen phosphate crystals.

The asymmetric unit consists of four HgCl2 units and two L-proline zwitterions (Fig.1). In each HgCl2 units the metal atom is strongly bonded to two Cl atoms, with Hg—Cl distances in the range 2.255 (7) Å–2.337 (6) Å. These distances are comparable with those observed for ammonium mercury (II) dichloride nitrate (Nockemann & Meyer, 2002) and (2,2-bipyridine N,N'-dioxide-k2O,O')dichloro-mercury(II) (Tedmann et al., 2004). Metal atoms in two HgCl2 units (Hg2 and Hg3) are also chelated by carboxylate O atoms of two L-proline ligands, with one strong and one weak Hg—O bonds [Hg2—O1 2.566 (12) Å, Hg2—O2 2.869 (13) Å, Hg3—O3 2.486 (13) Å and Hg3—O4 2.828 (13) Å]. These distances are comparable with those observed for ammonium mercury (II) dichloride nitrate (Nockemann & Meyer, 2002). The two HgCl2L units (L is L-proline) are linked via Hg2—O3 bond [Hg2—O3 2.634 (12) Å]. Of the remaining two HgCl2units, one unit (Hg1) is bonded to atom O1 of the adjacent L-proline ligand and atom Cl3 in the adjacent unit cell [Hg1···O1 2.564 (11) Å and Hg1—Cl3(1 + x,y,z) 3.009 (7) Å], and the other unit is weakly bonded with atom O4 [Hg4—O4 2.888 (12) Å]. The geometry around metal atoms Hg1, Hg2 and Hg3 is nearly linear as a result of constraints imposed by chelation [Cl2—Hg1—Cl1 168.25 (18)°, Cl3—Hg2—Cl4 166.19 (18)° and Cl6—Hg3—Cl5 163.51 (18)°] whereas that around atom Hg4 is linear [Cl8—Hg4—Cl7 178.5 (3)°].

In the crystal structure, the HgCl2 and L-proline units are linked to form an extended chain along the a axis (Fig.2). The chain structure is further strengthened by N—H···Cl hydrogen bonds (Table 2). The polymeric chains are arranged into layers parallel to the ab plane (Fig.3). The structure of the title compound was originally determined by Ehsan et al. (1996) but no three-dimensional coordinates are available.

Experimental

The title compound was crystallized at room temperature by slow evaporation of an aqueous solution of L-proline and mercury(II) chloride in a stoichimetric ratio of 1:2.

Refinement

The large anisotropic displacement parameters of atoms C3, C8 and C9 suggested disorder in five-membered rings. But attempts to refine the structure with a disorder model did not improve these parameters. Hence, during the final cycles of refinement the Uij components of atoms C3, C8 and C9 were restrained to approximate isotropic behaviour. The unresolved disorder resulted in poor precision on C—C bond lengths. H atoms were placed in idealized positions and allowed to ride on their parent atoms, with N—H = 0.90 Å and C—H = 0.97 or 0.98 Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Atom Cl3A is generated by the symmetry operation (1+ x, y, z). Dashed bonds indicate weak interactions.

Fig. 2.

Fig. 2.

Part of an extended chain running along the a axis. Dashed bonds indicate weak interactions.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.`

Crystal data

[Hg4Cl8(C5H9NO2)2] Z = 1
Mr = 1316.23 F000 = 580
Triclinic, P1 Dx = 3.461 Mg m3
Hall symbol: P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.2742 (4) Å Cell parameters from 5619 reflections
b = 9.4472 (5) Å θ = 2.4–35.5º
c = 10.4767 (6) Å µ = 25.10 mm1
α = 108.621 (3)º T = 293 (2) K
β = 107.260 (2)º Plate, pale brown
γ = 97.353 (2)º 0.20 × 0.10 × 0.10 mm
V = 631.51 (6) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer 3956 independent reflections
Radiation source: fine-focus sealed tube 3773 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.044
T = 293(2) K θmax = 25.0º
ω and φ scans θmin = 2.4º
Absorption correction: multi-scan(Blessing, 1995) h = −6→8
Tmin = 0.082, Tmax = 0.188 k = −11→11
10896 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037   w = 1/[σ2(Fo2) + (0.0781P)2 + 1.0577P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 1.75 e Å3
3956 reflections Δρmin = −2.51 e Å3
255 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 restraints Extinction coefficient: 0.0066 (5)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1736 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.057 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.899 (3) 0.4306 (18) 0.7785 (18) 0.028 (4)
C2 0.969 (2) 0.3323 (15) 0.6707 (14) 0.029 (3)
H2 1.1092 0.3762 0.6931 0.034*
C3 0.849 (3) 0.307 (2) 0.515 (2) 0.061 (5)
H3A 0.7262 0.3395 0.5091 0.073*
H3B 0.9246 0.3647 0.4779 0.073*
C4 0.805 (3) 0.135 (2) 0.4312 (19) 0.053 (5)
H4A 0.6851 0.1011 0.3467 0.063*
H4B 0.9145 0.1099 0.4004 0.063*
C5 0.782 (3) 0.063 (2) 0.529 (2) 0.054 (5)
H5A 0.8072 −0.0391 0.5014 0.065*
H5B 0.6496 0.0542 0.5329 0.065*
C6 0.330 (2) 0.4234 (17) 1.0096 (17) 0.029 (4)
C7 0.286 (2) 0.5707 (15) 1.1024 (14) 0.031 (3)
H7 0.2394 0.6301 1.0431 0.037*
C8 0.224 (3) 0.559 (3) 1.308 (2) 0.066 (5)
H8A 0.2775 0.4742 1.3230 0.079*
H8B 0.1311 0.5775 1.3584 0.079*
C9 0.385 (4) 0.700 (3) 1.359 (3) 0.074 (7)
H9A 0.4888 0.7116 1.4480 0.089*
H9B 0.3341 0.7919 1.3756 0.089*
C10 0.463 (3) 0.673 (2) 1.237 (2) 0.059 (5)
H10A 0.5709 0.6227 1.2514 0.070*
H10B 0.5103 0.7701 1.2293 0.070*
N1 0.942 (2) 0.1748 (13) 0.6775 (12) 0.040 (3)
H1A 0.9010 0.1744 0.7504 0.048*
H1B 1.0575 0.1460 0.6915 0.048*
N2 0.1290 (17) 0.5265 (14) 1.1579 (15) 0.042 (3)
H2A 0.0369 0.5809 1.1448 0.050*
H2B 0.0685 0.4256 1.1103 0.050*
O1 0.9293 (18) 0.5718 (13) 0.7961 (14) 0.044 (3)
O2 0.8094 (19) 0.3750 (13) 0.8405 (12) 0.050 (3)
O3 0.457 (2) 0.4477 (15) 0.9648 (17) 0.055 (4)
O4 0.2390 (17) 0.2970 (11) 0.9976 (12) 0.039 (3)
Cl1 1.3639 (8) 0.8860 (6) 0.9691 (6) 0.0403 (14)
Cl2 0.9186 (9) 0.6904 (7) 0.5046 (7) 0.0569 (15)
Cl3 0.4113 (9) 0.5596 (8) 0.6683 (7) 0.0463 (14)
Cl4 0.8766 (8) 0.7849 (6) 1.1323 (6) 0.0388 (11)
Cl5 0.7759 (8) 0.2678 (7) 1.1413 (6) 0.0430 (13)
Cl6 0.3481 (8) 0.0587 (7) 0.6721 (6) 0.0504 (14)
Cl7 −0.1508 (9) −0.0454 (6) 0.8492 (6) 0.0408 (14)
Cl8 0.2824 (12) 0.1691 (10) 1.3145 (8) 0.076 (2)
Hg1 1.13721 (7) 0.76197 (5) 0.73403 (5) 0.0368 (2)
Hg2 0.65755 (7) 0.64526 (5) 0.89544 (5) 0.0337 (2)
Hg3 0.54733 (7) 0.19563 (5) 0.91009 (5) 0.0357 (2)
Hg4 0.07001 (8) 0.06525 (6) 1.08346 (6) 0.0426 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (9) 0.035 (8) 0.017 (8) 0.013 (6) 0.017 (7) 0.004 (7)
C2 0.038 (8) 0.030 (7) 0.021 (7) 0.013 (6) 0.019 (6) 0.005 (6)
C3 0.083 (9) 0.056 (8) 0.047 (8) 0.015 (6) 0.012 (6) 0.034 (7)
C4 0.077 (14) 0.041 (9) 0.014 (8) 0.002 (8) 0.007 (8) −0.010 (7)
C5 0.072 (13) 0.036 (9) 0.044 (11) −0.002 (8) 0.022 (10) 0.006 (8)
C6 0.024 (9) 0.034 (8) 0.025 (8) 0.002 (6) 0.007 (7) 0.012 (7)
C7 0.045 (9) 0.033 (7) 0.012 (6) 0.008 (6) 0.014 (6) 0.002 (6)
C8 0.059 (8) 0.086 (9) 0.060 (9) 0.010 (6) 0.039 (7) 0.024 (7)
C9 0.071 (10) 0.079 (10) 0.066 (10) 0.005 (7) 0.022 (8) 0.025 (8)
C10 0.036 (10) 0.072 (12) 0.044 (11) −0.014 (8) 0.006 (8) 0.010 (9)
N1 0.073 (9) 0.030 (6) 0.022 (6) 0.017 (6) 0.017 (6) 0.012 (5)
N2 0.025 (6) 0.040 (6) 0.052 (9) 0.002 (5) 0.009 (6) 0.015 (6)
O1 0.055 (8) 0.034 (6) 0.052 (8) 0.012 (5) 0.030 (6) 0.016 (6)
O2 0.067 (8) 0.052 (7) 0.028 (6) −0.007 (6) 0.029 (6) 0.008 (5)
O3 0.078 (9) 0.044 (7) 0.066 (10) 0.022 (6) 0.054 (8) 0.024 (7)
O4 0.052 (7) 0.026 (5) 0.032 (6) 0.000 (5) 0.018 (5) 0.004 (5)
Cl1 0.034 (3) 0.041 (3) 0.040 (3) 0.006 (2) 0.008 (2) 0.013 (2)
Cl2 0.054 (3) 0.057 (3) 0.049 (3) 0.021 (3) 0.003 (2) 0.017 (3)
Cl3 0.039 (3) 0.058 (3) 0.038 (3) 0.012 (2) 0.010 (2) 0.017 (2)
Cl4 0.044 (3) 0.034 (2) 0.032 (3) 0.005 (2) 0.012 (2) 0.008 (2)
Cl5 0.040 (3) 0.055 (3) 0.026 (3) 0.002 (2) 0.009 (2) 0.011 (2)
Cl6 0.045 (3) 0.059 (3) 0.034 (3) 0.008 (2) 0.007 (2) 0.008 (3)
Cl7 0.051 (3) 0.037 (3) 0.036 (3) 0.012 (2) 0.016 (2) 0.015 (2)
Cl8 0.063 (4) 0.093 (5) 0.038 (3) 0.005 (3) −0.004 (3) 0.006 (3)
Hg1 0.0368 (4) 0.0374 (4) 0.0338 (4) 0.0094 (3) 0.0100 (3) 0.0127 (3)
Hg2 0.0300 (4) 0.0369 (4) 0.0325 (4) 0.0074 (3) 0.0099 (3) 0.0125 (3)
Hg3 0.0298 (4) 0.0387 (4) 0.0323 (4) 0.0050 (3) 0.0082 (3) 0.0097 (3)
Hg4 0.0438 (5) 0.0425 (4) 0.0349 (5) 0.0072 (3) 0.0095 (3) 0.0119 (4)

Geometric parameters (Å, °)

C1—O2 1.224 (19) C9—C10 1.51 (3)
C1—O1 1.267 (19) C9—H9A 0.97
C1—C2 1.480 (19) C9—H9B 0.97
C2—N1 1.502 (16) C10—H10A 0.97
C2—C3 1.53 (2) C10—H10B 0.97
C2—H2 0.98 N1—H1A 0.90
C3—C4 1.52 (2) N1—H1B 0.90
C3—H3A 0.97 N2—H2A 0.90
C3—H3B 0.97 N2—H2B 0.90
C4—C5 1.44 (2) O4—Hg4 2.888 (10)
C4—H4A 0.97 O4—Hg3 2.828 (11)
C4—H4B 0.97 O2—Hg2 2.869 (13)
C5—N1 1.57 (2) O1—Hg1 2.564 (11)
C5—H5A 0.97 O1—Hg2 2.566 (12)
C5—H5B 0.97 O3—Hg3 2.486 (13)
C6—O3 1.18 (2) O3—Hg2 2.634 (12)
C6—O4 1.236 (17) Cl1—Hg1 2.326 (6)
C6—C7 1.56 (2) Cl2—Hg1 2.276 (6)
C7—N2 1.495 (18) Cl3—Hg2 2.323 (6)
C7—C10 1.52 (2) Cl4—Hg2 2.337 (6)
C7—H7 0.98 Cl5—Hg3 2.316 (6)
C8—N2 1.43 (2) Cl6—Hg3 2.304 (6)
C8—C9 1.49 (3) Cl7—Hg4 2.300 (6)
C8—H8A 0.97 Cl8—Hg4 2.255 (7)
C8—H8B 0.97 Hg1—Cl3i 3.009 (6)
O2—C1—O1 123.4 (15) C9—C10—H10B 110.8
O2—C1—C2 120.9 (14) C7—C10—H10B 110.8
O1—C1—C2 115.6 (13) H10A—C10—H10B 108.9
C1—C2—N1 108.0 (11) C2—N1—C5 106.4 (11)
C1—C2—C3 113.8 (14) C2—N1—H1A 110.5
N1—C2—C3 105.4 (12) C5—N1—H1A 110.5
C1—C2—H2 109.8 C2—N1—H1B 110.5
N1—C2—H2 109.8 C5—N1—H1B 110.5
C3—C2—H2 109.8 H1A—N1—H1B 108.6
C4—C3—C2 105.3 (13) C8—N2—C7 107.8 (12)
C4—C3—H3A 110.7 C8—N2—H2A 110.2
C2—C3—H3A 110.7 C7—N2—H2A 110.2
C4—C3—H3B 110.7 C8—N2—H2B 110.2
C2—C3—H3B 110.7 C7—N2—H2B 110.2
H3A—C3—H3B 108.8 H2A—N2—H2B 108.5
C5—C4—C3 105.7 (15) C1—O1—Hg1 138.6 (10)
C5—C4—H4A 110.6 C1—O1—Hg2 99.7 (10)
C3—C4—H4A 110.6 Hg1—O1—Hg2 121.1 (4)
C5—C4—H4B 110.6 C6—O3—Hg3 100.3 (10)
C3—C4—H4B 110.6 C6—O3—Hg2 146.2 (12)
H4A—C4—H4B 108.7 Hg3—O3—Hg2 113.5 (5)
C4—C5—N1 103.2 (14) Cl2—Hg1—Cl1 168.25 (18)
C4—C5—H5A 111.1 Cl2—Hg1—O1 94.4 (3)
N1—C5—H5A 111.1 Cl1—Hg1—O1 94.2 (3)
C4—C5—H5B 111.1 Cl3—Hg2—Cl4 166.19 (18)
N1—C5—H5B 111.1 Cl3—Hg2—O1 93.9 (3)
H5A—C5—H5B 109.1 Cl4—Hg2—O1 94.9 (3)
O3—C6—O4 127.5 (16) Cl3—Hg2—O3 90.6 (4)
O3—C6—C7 114.5 (14) Cl4—Hg2—O3 94.2 (4)
O4—C6—C7 117.8 (14) O1—Hg2—O3 119.6 (4)
N2—C7—C10 104.9 (12) Cl6—Hg3—Cl5 163.51 (18)
N2—C7—C6 109.9 (11) Cl6—Hg3—O3 103.4 (4)
C10—C7—C6 113.7 (14) Cl5—Hg3—O3 93.0 (4)
N2—C7—H7 109.4 Cl8—Hg4—Cl7 178.5 (3)
C10—C7—H7 109.4 Cl3—Hg2—O2 95.4 (3)
C6—C7—H7 109.4 Cl4—Hg2—O2 98.4 (3)
N2—C8—C9 103.9 (17) O1—Hg2—O2 47.2 (3)
N2—C8—H8A 111.0 O3—Hg2—O2 72.4 (3)
C9—C8—H8A 111.0 C1—O2—Hg2 86.4 (10)
N2—C8—H8B 111.0 C6—O4—Hg3 82.7 (10)
C9—C8—H8B 111.0 C6—O4—Hg4 158.6 (11)
H8A—C8—H8B 109.0 Hg3—O4—Hg4 106.4 (3)
C8—C9—C10 103.5 (19) Cl6—Hg3—O4 95.2 (3)
C8—C9—H9A 111.1 Cl5—Hg3—O4 95.6 (3)
C10—C9—H9A 111.1 O3—Hg3—O4 47.7 (3)
C8—C9—H9B 111.1 Cl8—Hg4—O4 95.3 (3)
C10—C9—H9B 111.1 Cl7—Hg4—O4 86.2 (3)
H9A—C9—H9B 109.0 Cl2—Hg1—Cl3i 98.1 (2)
C9—C10—C7 104.8 (16) Cl1—Hg1—Cl3i 89.20 (19)
C9—C10—H10A 110.8 O1—Hg1—Cl3i 94.7 (3)
C7—C10—H10A 110.8
O2—C1—C2—N1 −10 (2) Hg1—O1—Hg2—O3 −178.1 (4)
O1—C1—C2—N1 173.3 (15) C6—O3—Hg2—Cl3 −85 (3)
O2—C1—C2—C3 107.0 (18) Hg3—O3—Hg2—Cl3 91.5 (6)
O1—C1—C2—C3 −70 (2) C6—O3—Hg2—Cl4 82 (3)
C1—C2—C3—C4 −133.0 (16) Hg3—O3—Hg2—Cl4 −101.5 (6)
N1—C2—C3—C4 −14.8 (19) C6—O3—Hg2—O1 −179 (2)
C2—C3—C4—C5 34 (2) Hg3—O3—Hg2—O1 −3.4 (10)
C3—C4—C5—N1 −38 (2) C6—O3—Hg3—Cl6 91.9 (12)
O3—C6—C7—N2 −177.7 (15) Hg2—O3—Hg3—Cl6 −85.9 (6)
O4—C6—C7—N2 −1.7 (19) C6—O3—Hg3—Cl5 −87.8 (13)
O3—C6—C7—C10 −61 (2) Hg2—O3—Hg3—Cl5 94.5 (6)
O4—C6—C7—C10 115.4 (17) O1—C1—O2—Hg2 18.1 (18)
N2—C8—C9—C10 −39 (2) C2—C1—O2—Hg2 −158.7 (15)
C8—C9—C10—C7 29 (2) O3—C6—O4—Hg3 13.3 (19)
N2—C7—C10—C9 −8(2) C7—C6—O4—Hg3 −162.1 (13)
C6—C7—C10—C9 −128.2 (17) O3—C6—O4—Hg4 130 (3)
C1—C2—N1—C5 114.4 (14) C7—C6—O4—Hg4 −45 (4)
C3—C2—N1—C5 −7.6 (16) C1—O1—Hg2—O2 9.8 (10)
C4—C5—N1—C2 28.4 (18) Hg1—O1—Hg2—O2 −177.2 (8)
C9—C8—N2—C7 35 (2) C6—O3—Hg2—O2 180 (3)
C10—C7—N2—C8 −16.4 (17) Hg3—O3—Hg2—O2 −4.0 (6)
C6—C7—N2—C8 106.1 (15) C1—O2—Hg2—Cl3 80.4 (10)
O2—C1—O1—Hg1 168.6 (12) C1—O2—Hg2—Cl4 −99.0 (10)
C2—C1—O1—Hg1 −15 (3) C1—O2—Hg2—O1 −10.0 (10)
O2—C1—O1—Hg2 −21 (2) C1—O2—Hg2—O3 169.2 (11)
C2—C1—O1—Hg2 156.4 (12) C6—O3—Hg3—O4 7.1 (11)
O4—C6—O3—Hg3 −15 (2) Hg2—O3—Hg3—O4 −170.7 (9)
C7—C6—O3—Hg3 160.2 (10) C6—O4—Hg3—Cl6 −110.2 (9)
O4—C6—O3—Hg2 161.1 (15) Hg4—O4—Hg3—Cl6 89.7 (4)
C7—C6—O3—Hg2 −23 (3) C6—O4—Hg3—Cl5 82.2 (9)
C1—O1—Hg1—Cl2 81.9 (18) Hg4—O4—Hg3—Cl5 −77.9 (3)
Hg2—O1—Hg1—Cl2 −87.5 (6) C6—O4—Hg3—O3 −6.7 (10)
C1—O1—Hg1—Cl1 −106.1 (18) Hg4—O4—Hg3—O3 −166.9 (7)
Hg2—O1—Hg1—Cl1 84.4 (6) C6—O4—Hg4—Cl8 −25 (3)
C1—O1—Hg2—Cl3 −83.9 (11) Hg3—O4—Hg4—Cl8 87.9 (4)
Hg1—O1—Hg2—Cl3 89.1 (6) C6—O4—Hg4—Cl7 155 (3)
C1—O1—Hg2—Cl4 106.7 (11) Hg3—O4—Hg4—Cl7 −92.1 (3)
Hg1—O1—Hg2—Cl4 −80.4 (5) C1—O1—Hg1—Cl3i −16.5 (18)
C1—O1—Hg2—O3 9.0 (14) Hg2—O1—Hg1—Cl3i 174.0 (5)

Symmetry codes: (i) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl7i 0.90 2.63 3.282 (14) 130
N1—H1B···Cl6i 0.90 2.40 3.290 (16) 167
N2—H2A···Cl4ii 0.90 2.40 3.267 (15) 163
N2—H2B···Cl5ii 0.90 2.60 3.234 (15) 128

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2640).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ehsan, M. Q., Malik, K. M. A. & Haider, S. Z. (1996). J. Banglad. Acad. Sci.20, 175.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Janczak, J. & Luger, P. (1997). Acta Cryst. C53, 1954–1956.
  8. Jiang, M. H. & Fang, Q. (1999). Adv. Mater.11, 1147–1151.
  9. Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys.39, 3798–3813.
  10. Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38.
  11. McL Mathieson, A. & Welsh, H. K. (1952). Acta Cryst.5, 599–604.
  12. Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, i68–i69.
  13. Padmanabhan, S., Suresh, S. & Vijayan, M. (1995). Acta Cryst. C51, 2098–2100.
  14. Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002a). Acta Cryst. E58, o74–o76.
  15. Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002b). Acta Cryst. E58, o862–o864.
  16. Schaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156–1158.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  19. Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 423–424. [DOI] [PubMed]
  20. Tedmann, O. M., Zavalij, P. Y., Madan, S. K. & Oliver, S. R. J. (2004). Acta Cryst. E60, m1706–m1707.
  21. Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128.
  22. Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.
  23. Yukawa, Y., Yasukawa, N., Inomata, Y. & Takeuchi, T. (1985). Bull. Chem. Soc. Jpn, 58, 1591–1592.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802196X/lh2640sup1.cif

e-64-m1048-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802196X/lh2640Isup2.hkl

e-64-m1048-Isup2.hkl (193.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES