Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):m1050–m1051. doi: 10.1107/S1600536808022320

μ-2,3,5,6-Tetra-2-pyridylpyrazine-κ3 N 1,N 2,N 63 N 3,N 4,N 5-bis­[(methanol-κO)(nitrato-κ2 O,O′)(nitrato-κO)cadmium(II)]

Mirabdullah Seyed Sadjadi a,*, Amin Ebadi a, Karim Zare b, Vahid Amani c, Hamid Reza Khavasi b
PMCID: PMC2961967  PMID: 21203037

Abstract

The title complex, [Cd2(NO3)4(C24H16N6)(CH4O)2], displays a centrosymmetric dinuclear structure, in which the 2,3,5,6-tetra-2-pyridinylpyrazine (tppz) ligand links two Cd ions separated by 7.323 (4) Å. Each CdII center is seven-coordinated by three N-atom donors of tppz in one plane, by two O atoms nearly normal to this plane, and by two O atoms 0.393 (3) and 0.488 (3) Å from that plane. The two CdII ions are above and below the plane of the pyrazine ring of the tppz ligand, oriented with respect to the pyridine rings at dihedral angles of 38.01 (3) and 31.90 (3)°. The dihedral angle between the two pyridine rings is 41.11 (3)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Bock et al. (1992); Carranza et al. (2004); Goodwin & Lyons (1959); Graf et al. (1993, 1997); Greaves & Stoeckli-Evans (1992); Hadadzadeh et al. (2006); Laine et al. (1995); Sakai & Kurashima (2003); Yamada et al. (2000); Zhang et al. (2005).graphic file with name e-64-m1050-scheme1.jpg

Experimental

Crystal data

  • [Cd2(NO3)4(C24H16N6)(CH4O)2]

  • M r = 925.37

  • Monoclinic, Inline graphic

  • a = 9.0777 (12) Å

  • b = 10.8949 (9) Å

  • c = 16.690 (2) Å

  • β = 93.847 (10)°

  • V = 1646.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 298 (2) K

  • 0.50 × 0.40 × 0.25 mm

Data collection

  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) T min = 0.510, T max = 0.710

  • 4664 measured reflections

  • 4642 independent reflections

  • 4223 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.171

  • S = 1.07

  • 4642 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.95 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022320/hk2497sup1.cif

e-64-m1050-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022320/hk2497Isup2.hkl

e-64-m1050-Isup2.hkl (170.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

O1—Cd1 2.330 (4)
O2—Cd1 2.431 (4)
O3—Cd1 2.476 (4)
O5—Cd1 2.305 (4)
N1—Cd1 2.407 (4)
N2—Cd1 2.359 (4)
N3—Cd1 2.393 (4)
O5—Cd1—O1 150.47 (16)
O5—Cd1—N2 119.29 (16)
O1—Cd1—N2 88.94 (13)
O5—Cd1—N3 94.10 (16)
O1—Cd1—N3 87.79 (13)
N2—Cd1—N3 69.31 (13)
O5—Cd1—N1 106.73 (17)
O1—Cd1—N1 90.37 (14)
N2—Cd1—N1 69.73 (12)
N3—Cd1—N1 139.02 (13)
O5—Cd1—O2 77.34 (15)
O1—Cd1—O2 81.82 (14)
N2—Cd1—O2 149.55 (11)
N3—Cd1—O2 138.56 (14)
N1—Cd1—O2 81.32 (12)
O5—Cd1—O3 72.18 (16)
O1—Cd1—O3 78.57 (14)
N2—Cd1—O3 152.93 (12)
N3—Cd1—O3 86.13 (13)
N1—Cd1—O3 133.44 (13)
O2—Cd1—O3 52.52 (12)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3i 0.92 (5) 1.87 (5) 2.788 (5) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Science and Research Campus, Islamic Azad University, Poonak, and Shahid Beheshti University for financial support

supplementary crystallographic information

Comment

Goodwin & Lyons (1959) were reported the synthesis of 2,3,5,6-tetra- (2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) were determined the structure of tppz by single crystal X-ray analysis. Among many reported compounds containing tppz, most are complexes of transition metal ions, including ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000) and zinc (Graf et al., 1993). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesized the title complex, and report herein its crystal structure.

The title complex is a centrosymmetric dinuclear complex, in which the tppz ligand link two Cd ions separated by 7.323 (4) Å (Fig. 1). Each CdII center is seven-coordinated by three N donors of tppz in one plane, two O atoms (O1 and O5) nearly normal to this plane (Table 1) and two O atoms -0.393 (3) Å (for O2) and -0.488 (3) Å (for O3) away from that plane. The two CdII ions are above and below the plane of the pyrazine ring B (N2/C6/C7/N2a/C6a/C7a) [symmetry code: (a) 1 - x, -y, -z] of the tppz ligand. The dihedral angles between rings A (N1/C1-C5), B and C (N3/C8-C12) are A/B = 38.01 (3)°, A/C = 41.11 (3)° and B/C = 31.90 (3)°.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, a solution of 2,3,5,6-tetra- (2-pyridinyl)pyrazine (0.4 g, 1 mmol) in HCl3 (30 ml) was added to a solution of Cd(NO3)2.4H2O (0.62 g, 2 mmol) in methanol (200 ml) and the resulting colorless solution was stirred for 15 min at room temperature. Then, it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.71 g, 76.73%, m.p < 573 k).

Refinement

H1B atom (for OH) was located in difference syntheses and refined isotropically [O-H = 0.92 (5) Å and Uiso(H) = 0.020 (11) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) 1 - x, -y, -z].

Fig. 2.

Fig. 2.

A packing diagram for the title molecule. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cd2(NO3)4(C24H16N6)(CH4O)2] F000 = 916
Mr = 925.37 Dx = 1.866 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1543 reflections
a = 9.0777 (12) Å θ = 2.9–29.2º
b = 10.8949 (9) Å µ = 1.38 mm1
c = 16.690 (2) Å T = 298 (2) K
β = 93.847 (10)º Prism, colorless
V = 1646.9 (3) Å3 0.50 × 0.40 × 0.25 mm
Z = 2

Data collection

Stoe IPDSII diffractometer 4642 independent reflections
Radiation source: fine-focus sealed tube 4223 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.075
Detector resolution: 0.15 mm pixels mm-1 θmax = 29.8º
T = 298(2) K θmin = 2.9º
rotation method scans h = −12→8
Absorption correction: numericalShape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005) k = −14→10
Tmin = 0.510, Tmax = 0.710 l = −22→19
4664 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171   w = 1/[σ2(Fo2) + (0.1202P)2 + 2.8103P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.015
4642 reflections Δρmax = 1.00 e Å3
239 parameters Δρmin = −0.95 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.38914 (3) 0.18792 (3) 0.167582 (18) 0.02737 (16)
O1 0.5852 (4) 0.0852 (3) 0.2353 (3) 0.0397 (8)
H1B 0.580 (6) 0.001 (5) 0.233 (3) 0.020 (11)*
O2 0.2968 (5) 0.1892 (3) 0.3010 (3) 0.0391 (9)
O3 0.4556 (4) 0.3323 (3) 0.2788 (2) 0.0359 (8)
O4 0.3358 (5) 0.3363 (5) 0.3875 (3) 0.0502 (10)
O5 0.2209 (6) 0.3467 (5) 0.1596 (3) 0.0541 (10)
O6 0.1241 (9) 0.2195 (8) 0.0768 (8) 0.118 (4)
O7 −0.0039 (8) 0.3728 (10) 0.1114 (5) 0.115 (3)
N1 0.2489 (4) 0.0003 (4) 0.1585 (3) 0.0343 (8)
N2 0.4388 (4) 0.0798 (3) 0.0499 (2) 0.0270 (7)
N3 0.5671 (4) 0.2952 (3) 0.0946 (3) 0.0295 (7)
N4 0.3612 (4) 0.2867 (4) 0.3234 (2) 0.0288 (7)
N5 0.1090 (6) 0.3123 (4) 0.1154 (4) 0.0449 (12)
C1 0.1339 (6) −0.0214 (5) 0.2045 (4) 0.0440 (12)
H1 0.1363 0.0123 0.2558 0.053*
C2 0.0136 (6) −0.0917 (6) 0.1781 (4) 0.0482 (14)
H2 −0.0620 −0.1068 0.2117 0.058*
C3 0.0071 (5) −0.1392 (6) 0.1013 (4) 0.0465 (13)
H3 −0.0750 −0.1838 0.0816 0.056*
C4 0.1251 (5) −0.1196 (5) 0.0536 (3) 0.0365 (10)
H4 0.1232 −0.1502 0.0016 0.044*
C5 0.2455 (4) −0.0533 (4) 0.0855 (3) 0.0314 (8)
C6 0.3792 (4) −0.0321 (4) 0.0401 (3) 0.0264 (8)
C7 0.5546 (4) 0.1162 (4) 0.0106 (3) 0.0258 (7)
C8 0.5956 (4) 0.2482 (4) 0.0224 (3) 0.0279 (8)
C9 0.6505 (5) 0.3192 (4) −0.0380 (3) 0.0319 (10)
H9 0.6588 0.2868 −0.0890 0.038*
C10 0.6926 (5) 0.4390 (4) −0.0209 (3) 0.0361 (10)
H10 0.7325 0.4875 −0.0599 0.043*
C11 0.6746 (5) 0.4859 (4) 0.0553 (3) 0.0358 (10)
H11 0.7062 0.5648 0.0689 0.043*
C12 0.6086 (5) 0.4124 (4) 0.1104 (3) 0.0324 (9)
H12 0.5920 0.4451 0.1605 0.039*
C13 0.7367 (7) 0.1300 (6) 0.2397 (5) 0.0525 (14)
H13A 0.7409 0.2093 0.2650 0.063*
H13B 0.7702 0.1366 0.1865 0.063*
H13C 0.7990 0.0738 0.2706 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0283 (2) 0.0260 (2) 0.0286 (2) 0.00137 (9) 0.00796 (15) −0.00333 (9)
O1 0.0364 (16) 0.0306 (16) 0.052 (2) 0.0038 (13) 0.0046 (16) 0.0021 (15)
O2 0.045 (2) 0.0310 (17) 0.043 (2) −0.0054 (12) 0.0127 (18) 0.0033 (13)
O3 0.0322 (15) 0.0335 (14) 0.043 (2) −0.0044 (12) 0.0110 (16) −0.0079 (14)
O4 0.0327 (17) 0.082 (3) 0.037 (2) −0.0043 (18) 0.0072 (16) −0.023 (2)
O5 0.056 (2) 0.056 (2) 0.050 (2) 0.018 (2) −0.002 (2) −0.004 (2)
O6 0.090 (5) 0.076 (4) 0.179 (11) 0.014 (4) −0.058 (6) −0.043 (6)
O7 0.063 (4) 0.176 (8) 0.107 (6) 0.073 (5) 0.014 (4) 0.038 (6)
N1 0.0264 (16) 0.042 (2) 0.0352 (19) −0.0026 (14) 0.0116 (16) −0.0054 (16)
N2 0.0235 (14) 0.0275 (15) 0.0303 (17) 0.0017 (12) 0.0046 (14) −0.0009 (13)
N3 0.0296 (17) 0.0284 (15) 0.0311 (18) 0.0012 (13) 0.0064 (15) −0.0029 (14)
N4 0.0234 (15) 0.0354 (16) 0.0279 (17) −0.0004 (13) 0.0047 (14) −0.0077 (15)
N5 0.051 (2) 0.091 (3) 0.082 (3) 0.0054 (16) 0.002 (2) 0.015 (2)
C1 0.032 (2) 0.053 (3) 0.050 (3) −0.005 (2) 0.018 (2) −0.011 (2)
C2 0.031 (2) 0.055 (3) 0.060 (3) −0.009 (2) 0.021 (2) −0.015 (3)
C3 0.028 (2) 0.052 (3) 0.061 (3) −0.009 (2) 0.012 (2) −0.013 (3)
C4 0.0243 (17) 0.039 (2) 0.047 (3) 0.0025 (16) 0.0053 (18) −0.012 (2)
C5 0.0228 (16) 0.036 (2) 0.036 (2) 0.0003 (15) 0.0055 (16) −0.0057 (18)
C6 0.0229 (16) 0.0293 (18) 0.0275 (18) 0.0006 (13) 0.0050 (15) −0.0047 (15)
C7 0.0219 (15) 0.0279 (17) 0.0282 (18) 0.0002 (14) 0.0050 (15) −0.0029 (15)
C8 0.0230 (16) 0.0288 (18) 0.033 (2) 0.0007 (14) 0.0063 (15) −0.0021 (16)
C9 0.0276 (19) 0.032 (2) 0.037 (2) −0.0010 (14) 0.0117 (19) −0.0024 (16)
C10 0.034 (2) 0.032 (2) 0.044 (2) −0.0045 (17) 0.012 (2) −0.0003 (19)
C11 0.033 (2) 0.0295 (19) 0.046 (3) −0.0027 (16) 0.009 (2) −0.0044 (19)
C12 0.0320 (18) 0.0294 (19) 0.036 (2) 0.0036 (15) 0.0055 (18) −0.0053 (17)
C13 0.044 (3) 0.051 (3) 0.063 (4) 0.003 (2) 0.008 (3) 0.005 (3)

Geometric parameters (Å, °)

O1—Cd1 2.330 (4) C4—H4 0.9300
O1—H1B 0.92 (5) C5—N1 1.349 (6)
O2—Cd1 2.431 (4) C5—C6 1.492 (5)
O3—Cd1 2.476 (4) C6—N2 1.340 (5)
O5—Cd1 2.305 (4) C6—C7i 1.409 (5)
N1—Cd1 2.407 (4) C7—N2 1.336 (5)
N2—Cd1 2.359 (4) C7—C6i 1.409 (5)
N3—Cd1 2.393 (4) C7—C8 1.495 (6)
N4—O4 1.234 (5) C8—N3 1.350 (6)
N4—O2 1.257 (5) C8—C9 1.389 (6)
N4—O3 1.273 (5) C9—C10 1.385 (6)
N5—O6 1.211 (10) C9—H9 0.9300
N5—O7 1.217 (7) C10—C11 1.390 (7)
N5—O5 1.271 (8) C10—H10 0.9300
C1—N1 1.357 (6) C11—C12 1.387 (6)
C1—C2 1.382 (8) C11—H11 0.9300
C1—H1 0.9300 C12—N3 1.352 (6)
C2—C3 1.380 (9) C12—H12 0.9300
C2—H2 0.9300 C13—O1 1.457 (7)
C3—C4 1.393 (6) C13—H13A 0.9600
C3—H3 0.9300 C13—H13B 0.9600
C4—C5 1.385 (6) C13—H13C 0.9600
O5—Cd1—O1 150.47 (16) N1—C1—C2 122.5 (5)
O5—Cd1—N2 119.29 (16) N1—C1—H1 118.8
O1—Cd1—N2 88.94 (13) C2—C1—H1 118.8
O5—Cd1—N3 94.10 (16) C3—C2—C1 119.2 (5)
O1—Cd1—N3 87.79 (13) C3—C2—H2 120.4
N2—Cd1—N3 69.31 (13) C1—C2—H2 120.4
O5—Cd1—N1 106.73 (17) C2—C3—C4 119.0 (5)
O1—Cd1—N1 90.37 (14) C2—C3—H3 120.5
N2—Cd1—N1 69.73 (12) C4—C3—H3 120.5
N3—Cd1—N1 139.02 (13) C5—C4—C3 118.5 (5)
O5—Cd1—O2 77.34 (15) C5—C4—H4 120.7
O1—Cd1—O2 81.82 (14) C3—C4—H4 120.7
N2—Cd1—O2 149.55 (11) N1—C5—C4 122.8 (4)
N3—Cd1—O2 138.56 (14) N1—C5—C6 114.9 (4)
N1—Cd1—O2 81.32 (12) C4—C5—C6 122.2 (4)
O5—Cd1—O3 72.18 (16) N2—C6—C7i 118.7 (3)
O1—Cd1—O3 78.57 (14) N2—C6—C5 114.5 (3)
N2—Cd1—O3 152.93 (12) C7i—C6—C5 126.8 (4)
N3—Cd1—O3 86.13 (13) N2—C7—C6i 118.9 (4)
N1—Cd1—O3 133.44 (13) N2—C7—C8 114.7 (3)
O2—Cd1—O3 52.52 (12) C6i—C7—C8 126.3 (3)
C13—O1—Cd1 123.5 (3) N3—C8—C9 122.4 (4)
C13—O1—H1B 112 (3) N3—C8—C7 114.9 (3)
Cd1—O1—H1B 115 (4) C9—C8—C7 122.6 (4)
N4—O2—Cd1 95.5 (3) C10—C9—C8 118.9 (5)
N4—O3—Cd1 92.9 (2) C10—C9—H9 120.6
N5—O5—Cd1 108.2 (4) C8—C9—H9 120.6
C5—N1—C1 117.6 (4) C9—C10—C11 119.1 (4)
C5—N1—Cd1 113.9 (3) C9—C10—H10 120.4
C1—N1—Cd1 122.4 (3) C11—C10—H10 120.4
C7—N2—C6 122.3 (3) C12—C11—C10 118.5 (4)
C7—N2—Cd1 117.5 (3) C12—C11—H11 120.7
C6—N2—Cd1 117.3 (3) C10—C11—H11 120.7
C8—N3—C12 117.7 (4) N3—C12—C11 122.8 (4)
C8—N3—Cd1 116.4 (3) N3—C12—H12 118.6
C12—N3—Cd1 123.4 (3) C11—C12—H12 118.6
O4—N4—O2 121.2 (4) O1—C13—H13A 109.5
O4—N4—O3 120.5 (4) O1—C13—H13B 109.5
O2—N4—O3 118.2 (4) H13A—C13—H13B 109.5
O6—N5—O7 123.2 (9) O1—C13—H13C 109.5
O6—N5—O5 116.1 (6) H13A—C13—H13C 109.5
O7—N5—O5 120.6 (8) H13B—C13—H13C 109.5
N1—C1—C2—C3 −1.9 (10) C13—O1—Cd1—N3 19.8 (4)
C1—C2—C3—C4 2.8 (10) C13—O1—Cd1—N1 158.9 (4)
C2—C3—C4—C5 0.4 (9) C13—O1—Cd1—O2 −119.9 (4)
C3—C4—C5—N1 −4.9 (8) C13—O1—Cd1—O3 −66.7 (4)
C3—C4—C5—C6 177.5 (5) C7—N2—Cd1—O5 94.7 (4)
N1—C5—C6—N2 −36.5 (6) C6—N2—Cd1—O5 −104.3 (4)
C4—C5—C6—N2 141.4 (5) C7—N2—Cd1—O1 −76.2 (3)
N1—C5—C6—C7i 143.9 (5) C6—N2—Cd1—O1 84.8 (3)
C4—C5—C6—C7i −38.2 (7) C7—N2—Cd1—N3 11.8 (3)
N2—C7—C8—N3 31.1 (6) C6—N2—Cd1—N3 172.8 (4)
C6i—C7—C8—N3 −152.5 (4) C7—N2—Cd1—N1 −167.0 (4)
N2—C7—C8—C9 −145.2 (4) C6—N2—Cd1—N1 −6.0 (3)
C6i—C7—C8—C9 31.2 (7) C7—N2—Cd1—O2 −148.0 (3)
N3—C8—C9—C10 7.2 (7) C6—N2—Cd1—O2 13.0 (5)
C7—C8—C9—C10 −176.8 (5) C7—N2—Cd1—O3 −14.4 (5)
C8—C9—C10—C11 −2.0 (8) C6—N2—Cd1—O3 146.6 (3)
C9—C10—C11—C12 −2.9 (8) C8—N3—Cd1—O5 −114.3 (3)
C10—C11—C12—N3 3.1 (8) C12—N3—Cd1—O5 47.6 (4)
C4—C5—N1—C1 5.8 (8) C8—N3—Cd1—O1 95.3 (3)
C6—C5—N1—C1 −176.4 (5) C12—N3—Cd1—O1 −102.9 (4)
C4—C5—N1—Cd1 −147.4 (4) C8—N3—Cd1—N2 5.6 (3)
C6—C5—N1—Cd1 30.5 (5) C12—N3—Cd1—N2 167.4 (4)
C2—C1—N1—C5 −2.4 (9) C8—N3—Cd1—N1 7.2 (5)
C2—C1—N1—Cd1 148.4 (5) C12—N3—Cd1—N1 169.1 (4)
C6i—C7—N2—C6 −3.0 (7) C8—N3—Cd1—O2 170.3 (3)
C8—C7—N2—C6 173.7 (4) C12—N3—Cd1—O2 −27.9 (5)
C6i—C7—N2—Cd1 157.0 (3) C8—N3—Cd1—O3 173.9 (3)
C8—C7—N2—Cd1 −26.3 (5) C12—N3—Cd1—O3 −24.2 (4)
C7i—C6—N2—C7 3.0 (7) C5—N1—Cd1—O5 102.0 (3)
C5—C6—N2—C7 −176.7 (4) C1—N1—Cd1—O5 −49.8 (5)
C7i—C6—N2—Cd1 −157.0 (3) C5—N1—Cd1—O1 −102.5 (3)
C5—C6—N2—Cd1 23.3 (5) C1—N1—Cd1—O1 105.8 (5)
C9—C8—N3—C12 −7.0 (7) C5—N1—Cd1—N2 −13.7 (3)
C7—C8—N3—C12 176.7 (4) C1—N1—Cd1—N2 −165.5 (5)
C9—C8—N3—Cd1 155.9 (4) C5—N1—Cd1—N3 −15.4 (5)
C7—C8—N3—Cd1 −20.4 (5) C1—N1—Cd1—N3 −167.2 (4)
C11—C12—N3—C8 1.7 (7) C5—N1—Cd1—O2 175.9 (4)
C11—C12—N3—Cd1 −159.9 (4) C1—N1—Cd1—O2 24.1 (5)
O4—N4—O2—Cd1 171.9 (4) C5—N1—Cd1—O3 −177.0 (3)
O3—N4—O2—Cd1 −9.3 (5) C1—N1—Cd1—O3 31.3 (5)
O4—N4—O3—Cd1 −172.1 (4) N4—O2—Cd1—O5 −71.8 (3)
O2—N4—O3—Cd1 9.1 (5) N4—O2—Cd1—O1 87.1 (3)
O6—N5—O5—Cd1 −12.9 (9) N4—O2—Cd1—N2 160.8 (3)
O7—N5—O5—Cd1 169.2 (6) N4—O2—Cd1—N3 9.9 (4)
N5—O5—Cd1—O1 −154.5 (3) N4—O2—Cd1—N1 178.8 (3)
N5—O5—Cd1—N2 44.2 (4) N4—O2—Cd1—O3 5.3 (3)
N5—O5—Cd1—N3 112.8 (4) N4—O3—Cd1—O5 82.3 (3)
N5—O5—Cd1—N1 −31.5 (4) N4—O3—Cd1—O1 −93.6 (3)
N5—O5—Cd1—O2 −108.3 (4) N4—O3—Cd1—N2 −157.7 (3)
N5—O5—Cd1—O3 −162.6 (4) N4—O3—Cd1—N3 177.9 (3)
C13—O1—Cd1—O5 −74.6 (5) N4—O3—Cd1—N1 −14.1 (4)
C13—O1—Cd1—N2 89.2 (4) N4—O3—Cd1—O2 −5.2 (3)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···O3ii 0.92 (5) 1.87 (5) 2.788 (5) 172

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2497).

References

  1. Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed.31, 299–301.
  2. Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc.81, 6415–6422.
  6. Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta.204, 239–246.
  7. Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta.257, 89–97.
  8. Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.
  9. Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004.
  10. Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem.34, 5156–5165.
  11. Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  14. Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844.
  15. Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022320/hk2497sup1.cif

e-64-m1050-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022320/hk2497Isup2.hkl

e-64-m1050-Isup2.hkl (170.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES