Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):m1067. doi: 10.1107/S1600536808022885

(2,2′-Bipyridine)bis­(3-carboxy­pyrazine-2-carboxyl­ato)copper(II) dihydrate

Hossein Aghabozorg a,*, Mahdieh Parvizi b, Elahe Sadrkhanlou c
PMCID: PMC2961978  PMID: 21203048

Abstract

The title six-coordinated distorted octa­hedral complex, [Cu(C6H3N2O4)2(C10H8N2)]·2H2O, consists of two 3-carboxy­pyrazine-2-carboxyl­ate anions and one 2,2′-bipyridine ligand. There is a twofold rotation axis positioned at the CuII center. The N atoms of the pyrazine ring occupy the axial positions and two proton-transferred O atoms of tbe acid together with the two N atoms of the 2,2′-bipyridine ligand complete the equatorial plane. The inter­actions existing in the crystal structure are inter­molecular O—H⋯O hydrogen bonds, and C—H⋯O and C—O⋯π inter­actions (O⋯π =3.145 Å, C—O⋯π = 149.75°).

Related literature

There are several compounds made from pyrazine-2,3-dicarboxylic acid, but most of them are in a polymeric form; see, for example: Tombul et al. (2007, 2008). For related literature, see: Egli & Sarkhel (2007).graphic file with name e-64-m1067-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H3N2O4)2(C10H8N2)]·2H2O

  • M r = 589.96

  • Monoclinic, Inline graphic

  • a = 18.3080 (8) Å

  • b = 9.2168 (4) Å

  • c = 16.3235 (7) Å

  • β = 122.480 (5)°

  • V = 2323.59 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.823, T max = 0.823

  • 14982 measured reflections

  • 3500 independent reflections

  • 3289 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.063

  • S = 1.04

  • 3500 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022885/om2248sup1.cif

e-64-m1067-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022885/om2248Isup2.hkl

e-64-m1067-Isup2.hkl (171.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.88 1.66 2.5390 (12) 170
O5—H5A⋯O1 0.84 1.89 2.7218 (13) 173
O5—H5B⋯O4ii 0.86 1.84 2.6989 (13) 177
C7—H7A⋯O2ii 0.95 2.57 3.1144 (14) 117
C8—H8A⋯O2ii 0.95 2.45 3.0433 (13) 121
C9—H9A⋯O5iii 0.95 2.55 3.2168 (13) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The structure consists of [Cu(2,3-pzdcH)2(2,2'- bpy)]. 2H2O, where pzdcH2 and 2,2'-bpy are pyrazine-2,3-dicarboxylic acid and 2,2'-bipyridine, respectively. The presence of bidentate mono anionic (pzdcH)- and neutral 2,2'-bipyridine ligands results in a neutral complex. The asymmetric unit is given in Fig. 1. The obtained hexacoordinated geometry is distorted octahedral. The bond lengths and angles around the CuII center are all in accordance with the geometrical steric effects.

There is a 2-fold rotation axis positioned at CuII center, transforming one half of the compound to the other.

The main interaction responsible for stabilizing such a framework is O–H···O hydrogen bonds. The water molecule participates in two hydrogen bonds relating two neighboring complexes. There is also a weaker C–H···O which joins the third complex to the series.

The O3–H3O···O5(x, -y, z - 1/2, 1.664 Å) and O5–H5B···O4 (-x + 3/2, -y + 1/2, -z, 1.839 Å) form hydrogen-bonded chains described by C22(14) graph-set descriptor (Fig. 2). Expansion of these chains results in layer. Furthermore, the C–H···O interactions between the complexes themselves help in the stabilization of the layers. In the third dimension, there is a similar layer at about a 4.1 Å distance. These layers are connected to each other via a fascinating C–O···π interaction by C6–O3 and a pyrazine ring (Fig. 3). All factors including O···π distance (3.145 Å), C–O···π angle (α = 149.75°) and dihedral angle between the planes defined by X2C–O and the aromatic system (ω = 79.18°), are in the mentioned range as in the reference [Egli & Sarkhel, 2007].

Figure 4 represents the packing diagram of this crystal lattice.

Experimental

To a 10 ml of a stirring aqueous solution of pyrazine-2,3-dicarboxylic acid (0.084 g, 0.5 mmol) and 2,2'- bipyridine (0.078 g, 0.5 mmol), was added a 0.5 molar equivalent of CuSO4. 5 H2O (0.062 g, 0.25 mmol) at room temperature. A neutral copper(II) complex, [Cu(pzdcH)2(2,2'- bpy)]. 2H2O, was isolated as very light blue crystals. Slow evaporation of the solvent result in product complex in a week.

Figures

Fig. 1.

Fig. 1.

The title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Graph set descriptor of chains made by hydrogen bonding.

Fig. 3.

Fig. 3.

C–O···π interaction between complexes.

Fig. 4.

Fig. 4.

Crystal packing of [Cu(pzdcH)2(2,2'- bpy)]. 2H2O, along c axis.

Crystal data

[Cu(C6H3N2O4)2(C10H8N2)]·2H2O F000 = 1204
Mr = 589.96 Dx = 1.686 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9557 reflections
a = 18.3080 (8) Å θ = 2.6–30.5º
b = 9.2168 (4) Å µ = 1.01 mm1
c = 16.3235 (7) Å T = 100 (2) K
β = 122.480 (5)º Prism, colourless
V = 2323.59 (18) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 3500 independent reflections
Radiation source: fine-focus sealed tube 3289 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.017
T = 100(2) K θmax = 30.5º
φ and ω scans θmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −26→26
Tmin = 0.823, Tmax = 0.823 k = −13→13
14982 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.063   w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3500 reflections Δρmax = 0.49 e Å3
177 parameters Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.367362 (16) 0.2500 0.01104 (5)
O1 0.91326 (4) 0.21893 (8) 0.16501 (5) 0.01386 (13)
O2 0.85176 (5) 0.08782 (9) 0.02861 (6) 0.02271 (16)
O3 0.90660 (5) 0.00760 (8) −0.12364 (6) 0.02014 (15)
H3O 0.8658 −0.0282 −0.1804 0.024*
O4 0.81385 (5) 0.19258 (9) −0.16881 (6) 0.02211 (16)
N1 1.02854 (5) 0.32913 (9) 0.12702 (6) 0.01404 (15)
N2 1.01283 (6) 0.27792 (10) −0.05007 (6) 0.01888 (17)
N3 0.91587 (5) 0.53313 (8) 0.19274 (6) 0.01230 (14)
C1 0.96492 (6) 0.24626 (10) 0.05929 (7) 0.01255 (15)
C2 0.95681 (6) 0.22146 (10) −0.02994 (7) 0.01416 (16)
C3 1.07722 (7) 0.35806 (12) 0.01940 (8) 0.01958 (19)
H3A 1.1187 0.3983 0.0079 0.023*
C4 1.08554 (7) 0.38463 (11) 0.10811 (8) 0.01748 (18)
H4A 1.1321 0.4426 0.1556 0.021*
C5 0.90413 (6) 0.17769 (10) 0.08456 (7) 0.01334 (16)
C6 0.88379 (7) 0.13731 (10) −0.11323 (7) 0.01512 (17)
C7 0.82914 (6) 0.52122 (10) 0.13793 (7) 0.01459 (16)
H7A 0.8039 0.4274 0.1197 0.018*
C8 0.77532 (6) 0.64164 (10) 0.10722 (7) 0.01620 (18)
H8A 0.7142 0.6307 0.0692 0.019*
C9 0.81274 (6) 0.77869 (11) 0.13324 (7) 0.01659 (17)
H9A 0.7773 0.8630 0.1126 0.020*
C10 0.90229 (6) 0.79146 (10) 0.18959 (7) 0.01464 (17)
H10A 0.9289 0.8843 0.2076 0.018*
C11 0.95228 (5) 0.66600 (10) 0.21923 (6) 0.01133 (15)
O5 0.80282 (5) 0.09628 (8) 0.20844 (6) 0.01843 (14)
H5A 0.8335 0.1329 0.1897 0.022*
H5B 0.7644 0.1614 0.1957 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01075 (8) 0.00986 (8) 0.01153 (8) 0.000 0.00533 (6) 0.000
O1 0.0162 (3) 0.0146 (3) 0.0136 (3) −0.0032 (2) 0.0099 (3) −0.0027 (2)
O2 0.0255 (4) 0.0255 (4) 0.0199 (4) −0.0116 (3) 0.0140 (3) −0.0098 (3)
O3 0.0209 (3) 0.0171 (3) 0.0184 (3) 0.0053 (3) 0.0079 (3) −0.0022 (3)
O4 0.0193 (3) 0.0250 (4) 0.0179 (3) 0.0082 (3) 0.0072 (3) −0.0017 (3)
N1 0.0152 (3) 0.0137 (3) 0.0149 (4) 0.0000 (3) 0.0092 (3) 0.0009 (3)
N2 0.0181 (4) 0.0255 (4) 0.0168 (4) 0.0038 (3) 0.0118 (3) 0.0035 (3)
N3 0.0119 (3) 0.0124 (3) 0.0118 (3) 0.0001 (3) 0.0058 (3) 0.0001 (3)
C1 0.0141 (4) 0.0121 (4) 0.0132 (4) 0.0018 (3) 0.0085 (3) 0.0013 (3)
C2 0.0149 (4) 0.0154 (4) 0.0132 (4) 0.0040 (3) 0.0082 (3) 0.0019 (3)
C3 0.0171 (4) 0.0257 (5) 0.0204 (5) 0.0016 (3) 0.0131 (4) 0.0045 (4)
C4 0.0156 (4) 0.0196 (4) 0.0184 (4) −0.0010 (3) 0.0099 (4) 0.0018 (3)
C5 0.0146 (4) 0.0134 (4) 0.0133 (4) −0.0003 (3) 0.0083 (3) −0.0002 (3)
C6 0.0178 (4) 0.0169 (4) 0.0133 (4) 0.0035 (3) 0.0101 (4) 0.0005 (3)
C7 0.0122 (4) 0.0142 (4) 0.0154 (4) −0.0007 (3) 0.0060 (3) −0.0004 (3)
C8 0.0120 (4) 0.0171 (4) 0.0162 (4) 0.0008 (3) 0.0054 (3) −0.0010 (3)
C9 0.0138 (4) 0.0149 (4) 0.0171 (4) 0.0027 (3) 0.0057 (3) −0.0008 (3)
C10 0.0144 (4) 0.0122 (4) 0.0153 (4) 0.0006 (3) 0.0067 (3) −0.0010 (3)
C11 0.0114 (4) 0.0126 (4) 0.0100 (4) 0.0000 (3) 0.0057 (3) 0.0003 (3)
O5 0.0213 (3) 0.0156 (3) 0.0244 (4) 0.0041 (3) 0.0163 (3) 0.0056 (3)

Geometric parameters (Å, °)

Cu1—O1 1.9880 (7) C2—C6 1.5117 (14)
Cu1—N3 2.0085 (8) C3—C4 1.3940 (15)
Cu1—N1 2.3565 (8) C3—H3A 0.9500
O1—C5 1.2890 (11) C4—H4A 0.9500
O2—C5 1.2243 (12) C7—C8 1.3869 (13)
O3—C6 1.3072 (12) C7—H7A 0.9500
O3—H3O 0.8844 C8—C9 1.3903 (13)
O4—C6 1.2142 (12) C8—H8A 0.9500
N1—C1 1.3340 (12) C9—C10 1.3886 (13)
N1—C4 1.3386 (12) C9—H9A 0.9500
N2—C3 1.3362 (15) C10—C11 1.3904 (13)
N2—C2 1.3388 (12) C10—H10A 0.9500
N3—C7 1.3446 (11) C11—C11i 1.4754 (17)
N3—C11 1.3496 (12) O5—H5A 0.8419
C1—C2 1.4012 (13) O5—H5B 0.8612
C1—C5 1.5169 (12)
O1—Cu1—O1i 93.03 (4) C4—C3—H3A 118.9
O1—Cu1—N3i 166.86 (3) N1—C4—C3 120.57 (10)
O1—Cu1—N3 94.19 (3) N1—C4—H4A 119.7
O1i—Cu1—N3 166.86 (3) C3—C4—H4A 119.7
N3i—Cu1—N3 80.95 (4) O2—C5—O1 125.49 (9)
O1—Cu1—N1i 91.84 (3) O2—C5—C1 118.30 (8)
N3—Cu1—N1i 92.57 (3) O1—C5—C1 116.20 (8)
O1—Cu1—N1 76.24 (3) O4—C6—O3 124.67 (10)
N3—Cu1—N1 100.53 (3) O4—C6—C2 121.68 (9)
N1i—Cu1—N1 162.80 (4) O3—C6—C2 113.34 (8)
C5—O1—Cu1 122.13 (6) N3—C7—C8 122.08 (9)
C6—O3—H3O 109.2 N3—C7—H7A 119.0
C1—N1—C4 118.00 (9) C8—C7—H7A 119.0
C1—N1—Cu1 107.29 (6) C7—C8—C9 118.61 (9)
C4—N1—Cu1 134.12 (7) C7—C8—H8A 120.7
C3—N2—C2 116.72 (9) C9—C8—H8A 120.7
C7—N3—C11 119.40 (8) C10—C9—C8 119.48 (9)
C7—N3—Cu1 125.73 (6) C10—C9—H9A 120.3
C11—N3—Cu1 114.69 (6) C8—C9—H9A 120.3
N1—C1—C2 120.85 (8) C9—C10—C11 118.84 (9)
N1—C1—C5 117.05 (8) C9—C10—H10A 120.6
C2—C1—C5 122.07 (8) C11—C10—H10A 120.6
N2—C2—C1 121.62 (9) N3—C11—C10 121.57 (8)
N2—C2—C6 113.75 (8) N3—C11—C11i 114.75 (5)
C1—C2—C6 124.57 (8) C10—C11—C11i 123.67 (5)
N2—C3—C4 122.22 (9) H5A—O5—H5B 104.5
N2—C3—H3A 118.9
O1i—Cu1—O1—C5 −96.65 (7) C3—N2—C2—C6 177.66 (9)
N3i—Cu1—O1—C5 26.65 (17) N1—C1—C2—N2 0.90 (14)
N3—Cu1—O1—C5 94.33 (7) C5—C1—C2—N2 −177.34 (9)
N1i—Cu1—O1—C5 −172.96 (7) N1—C1—C2—C6 −175.91 (9)
N1—Cu1—O1—C5 −5.49 (7) C5—C1—C2—C6 5.84 (14)
O1—Cu1—N1—C1 8.79 (6) C2—N2—C3—C4 −1.13 (15)
O1i—Cu1—N1—C1 101.46 (6) C1—N1—C4—C3 1.09 (14)
N3i—Cu1—N1—C1 −164.26 (6) Cu1—N1—C4—C3 −168.92 (7)
N3—Cu1—N1—C1 −82.99 (6) N2—C3—C4—N1 0.34 (16)
N1i—Cu1—N1—C1 55.98 (14) Cu1—O1—C5—O2 −179.47 (8)
O1—Cu1—N1—C4 179.57 (10) Cu1—O1—C5—C1 1.41 (11)
O1i—Cu1—N1—C4 −87.76 (10) N1—C1—C5—O2 −171.48 (9)
N3i—Cu1—N1—C4 6.52 (10) C2—C1—C5—O2 6.83 (14)
N3—Cu1—N1—C4 87.79 (10) N1—C1—C5—O1 7.71 (12)
N1i—Cu1—N1—C4 −133.24 (9) C2—C1—C5—O1 −173.98 (9)
O1—Cu1—N3—C7 15.90 (8) N2—C2—C6—O4 −96.00 (11)
O1i—Cu1—N3—C7 −107.29 (14) C1—C2—C6—O4 81.03 (13)
N3i—Cu1—N3—C7 −176.39 (10) N2—C2—C6—O3 77.89 (11)
N1i—Cu1—N3—C7 −76.14 (8) C1—C2—C6—O3 −105.07 (11)
N1—Cu1—N3—C7 92.66 (8) C11—N3—C7—C8 0.14 (14)
O1—Cu1—N3—C11 −169.01 (6) Cu1—N3—C7—C8 175.02 (7)
O1i—Cu1—N3—C11 67.81 (15) N3—C7—C8—C9 0.79 (15)
N3i—Cu1—N3—C11 −1.30 (5) C7—C8—C9—C10 −0.57 (15)
N1i—Cu1—N3—C11 98.96 (6) C8—C9—C10—C11 −0.53 (15)
N1—Cu1—N3—C11 −92.25 (7) C7—N3—C11—C10 −1.31 (13)
C4—N1—C1—C2 −1.68 (14) Cu1—N3—C11—C10 −176.74 (7)
Cu1—N1—C1—C2 170.83 (7) C7—N3—C11—C11i 178.90 (9)
C4—N1—C1—C5 176.65 (8) Cu1—N3—C11—C11i 3.47 (12)
Cu1—N1—C1—C5 −10.84 (9) C9—C10—C11—N3 1.50 (14)
C3—N2—C2—C1 0.53 (14) C9—C10—C11—C11i −178.73 (10)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O5ii 0.88 1.66 2.5390 (12) 170
O5—H5A···O1 0.84 1.89 2.7218 (13) 173
O5—H5B···O4iii 0.86 1.84 2.6989 (13) 177
C7—H7A···O2iii 0.95 2.57 3.1144 (14) 117
C8—H8A···O2iii 0.95 2.45 3.0433 (13) 121
C9—H9A···O5iv 0.95 2.55 3.2168 (13) 127

Symmetry codes: (ii) x, −y, z−1/2; (iii) −x+3/2, −y+1/2, −z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2248).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res.40, 197–205. [DOI] [PubMed]
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.
  6. Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022885/om2248sup1.cif

e-64-m1067-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022885/om2248Isup2.hkl

e-64-m1067-Isup2.hkl (171.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES