Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):m1072. doi: 10.1107/S1600536808023106

(Z)-3-Ferrocenyl-2-(4-pyridyl)­propene­nitrile

Xue-Qun Fu a, Wei Wang a,*
PMCID: PMC2961982  PMID: 21203052

Abstract

In the title compound, [Fe(C5H5)(C13H9N2)], the pyridine ring makes a dihedral angle of 9.91 (17)° with the substituted cyclo­penta­dienyl ring and the double bond adopts a Z configuration. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the molecules into a one-dimensional chain in the a+c direction.

Related literature

For related literature, see: Dupont et al. (2005); Shao et al. (2005).graphic file with name e-64-m1072-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C13H9N2)]

  • M r = 314.16

  • Monoclinic, Inline graphic

  • a = 11.520 (2) Å

  • b = 6.0650 (15) Å

  • c = 20.421 (5) Å

  • β = 91.194 (18)°

  • V = 1426.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 (2) K

  • 0.40 × 0.35 × 0.10 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.779, T max = 1.000 (expected range = 0.701–0.900)

  • 13960 measured reflections

  • 3229 independent reflections

  • 2543 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.122

  • S = 1.05

  • 3229 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023106/kj2092sup1.cif

e-64-m1072-sup1.cif (26.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023106/kj2092Isup2.hkl

e-64-m1072-Isup2.hkl (158.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯N2i 0.98 2.57 3.476 (4) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the Rigaku SCXmini CCD X-ray diffractometer.

supplementary crystallographic information

Comment

The chemistry of ferrocene has received much attention not only because of its exquisite structure but also its potential applications in many fields such as non-linear optical materials, catalyst and magnetoelectric materials (Dupont et al., 2005). The molecular structure of the title compound is shown in Fig. 1. The C11═C17 bond exhibits a Z configuration and the dihedral angle between the pyridine ring and the substituted cyclopentadienyl ring is 9.91 (17)°. The two cyclopentadienyl rings are nearly parallel with the dihedral angle of 3.3 (2)°. The Fe···Cg1 and Fe···Cg2 distances are 1.6611 (19) Å and 1.6563 (15) Å respectively and the Cg1···Fe···Cg2 angle is 176.18 (8), where Cg1 and Cg2 are the centroids of the unsubstituted and substituted Cp rings. Weak intermolecular C—H···N interactions are also found in the crystal structure, which link the compound into one-dimensional chain running in the a+c direction. Similar C—H···N hydrogen bonds in a ferrocene derivative were communicated by Shao et al. (2005).

Experimental

1 ml pyrrolidine was added to the mixture of formylferrocene (2.15 g, 0.01 mol) and 4-pyridineacetonitrile (1.18 g, 0.01 mol) in dichloromethane (100 ml). The mixture was stirred at room temperature for 5 h. After removing the solvent under reduced pressure, the residue was collected and dried in a vacuum desiccator. This crude product was purified by chromatography on silica gel, with petroleum ether and ethyl acetate (10:1 v/v) as eluent. Brownish red single crystals suitable for X-ray analysis were obtained by slow evaporation of ethanol at room temperature after 24 h.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Packing of the title compound, viewed along the b axis. Dashed lines indicate C—H···N hydrogen-bond interactions.

Crystal data

[Fe(C5H5)(C13H9N2)] F000 = 648
Mr = 314.16 Dx = 1.463 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3207 reflections
a = 11.520 (2) Å θ = 2.6–27.5º
b = 6.0650 (15) Å µ = 1.05 mm1
c = 20.421 (5) Å T = 293 (2) K
β = 91.194 (18)º Prism, red brown
V = 1426.5 (6) Å3 0.40 × 0.35 × 0.10 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3229 independent reflections
Radiation source: fine-focus sealed tube 2543 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.051
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 3.5º
ω scans h = −14→14
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −7→7
Tmin = 0.779, Tmax = 1.000 l = −26→26
13960 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.0583P)2 + 0.4315P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3229 reflections Δρmax = 0.36 e Å3
190 parameters Δρmin = −0.46 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.51801 (3) 0.90867 (6) 0.199529 (18) 0.03900 (15)
C12 0.4765 (2) 0.8530 (5) 0.29581 (12) 0.0390 (6)
C11 0.5556 (2) 0.8741 (5) 0.35128 (13) 0.0414 (6)
H11A 0.6106 0.7624 0.3553 0.050*
C17 0.5622 (2) 1.0306 (5) 0.39804 (12) 0.0383 (6)
C18 0.4829 (3) 1.2149 (5) 0.39637 (13) 0.0468 (7)
C16 0.3975 (2) 1.0073 (6) 0.26614 (14) 0.0473 (7)
H16A 0.3840 1.1590 0.2807 0.057*
C15 0.3415 (3) 0.9013 (6) 0.21203 (16) 0.0567 (8)
H15A 0.2832 0.9684 0.1826 0.068*
C1 0.6478 (2) 1.0312 (5) 0.45305 (12) 0.0397 (6)
C10 0.5885 (3) 0.8562 (7) 0.10971 (17) 0.0654 (10)
H10A 0.5645 0.7404 0.0788 0.079*
C5 0.6533 (3) 1.2051 (5) 0.49758 (14) 0.0540 (8)
H5A 0.6007 1.3211 0.4941 0.065*
C2 0.7280 (3) 0.8635 (5) 0.46294 (15) 0.0526 (8)
H2A 0.7274 0.7411 0.4355 0.063*
C13 0.4691 (3) 0.6536 (5) 0.25760 (14) 0.0496 (7)
H13A 0.5138 0.5185 0.2658 0.060*
C7 0.5411 (3) 1.0641 (8) 0.1125 (2) 0.0766 (13)
H7A 0.4800 1.1236 0.0835 0.092*
N2 0.8151 (3) 1.0472 (6) 0.55546 (14) 0.0719 (9)
C9 0.6729 (3) 0.8351 (7) 0.15696 (17) 0.0628 (9)
H9A 0.7189 0.7019 0.1654 0.075*
N1 0.4213 (3) 1.3642 (5) 0.39676 (15) 0.0733 (9)
C8 0.6822 (3) 1.0285 (8) 0.19148 (19) 0.0735 (11)
H8A 0.7371 1.0587 0.2277 0.088*
C4 0.7369 (3) 1.2044 (6) 0.54673 (17) 0.0683 (10)
H4A 0.7384 1.3226 0.5758 0.082*
C14 0.3852 (3) 0.6842 (6) 0.20690 (15) 0.0584 (9)
H14A 0.3621 0.5750 0.1737 0.070*
C6 0.5998 (4) 1.1787 (6) 0.1642 (3) 0.0914 (16)
H6A 0.5877 1.3322 0.1774 0.110*
C3 0.8088 (3) 0.8783 (7) 0.51349 (18) 0.0696 (10)
H3A 0.8621 0.7641 0.5187 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0337 (2) 0.0464 (3) 0.0369 (2) −0.00351 (17) 0.00162 (15) −0.00326 (17)
C12 0.0347 (13) 0.0474 (15) 0.0352 (13) −0.0041 (11) 0.0052 (11) −0.0042 (11)
C11 0.0385 (14) 0.0476 (16) 0.0381 (14) 0.0034 (12) 0.0023 (11) −0.0023 (12)
C17 0.0381 (13) 0.0438 (15) 0.0331 (13) 0.0010 (11) 0.0043 (11) −0.0007 (11)
C18 0.0560 (17) 0.0494 (17) 0.0350 (14) 0.0059 (14) −0.0010 (13) −0.0052 (12)
C16 0.0337 (13) 0.0643 (18) 0.0439 (16) 0.0046 (14) 0.0025 (12) −0.0034 (14)
C15 0.0327 (14) 0.090 (3) 0.0468 (17) −0.0094 (16) −0.0024 (13) −0.0015 (16)
C1 0.0403 (14) 0.0479 (15) 0.0311 (13) −0.0009 (12) 0.0054 (11) −0.0001 (11)
C10 0.067 (2) 0.085 (3) 0.0450 (18) −0.007 (2) 0.0142 (17) −0.0103 (17)
C5 0.0583 (18) 0.0573 (19) 0.0461 (16) 0.0090 (15) −0.0074 (14) −0.0147 (14)
C2 0.0554 (18) 0.0564 (18) 0.0457 (16) 0.0118 (14) −0.0065 (14) −0.0081 (14)
C13 0.0584 (18) 0.0493 (16) 0.0412 (15) −0.0135 (14) 0.0041 (14) −0.0039 (13)
C7 0.051 (2) 0.108 (4) 0.071 (2) 0.008 (2) 0.0099 (18) 0.045 (2)
N2 0.076 (2) 0.089 (2) 0.0502 (16) 0.0058 (18) −0.0193 (15) −0.0102 (16)
C9 0.0493 (18) 0.079 (2) 0.061 (2) 0.0138 (17) 0.0159 (16) 0.0095 (18)
N1 0.091 (2) 0.0681 (19) 0.0603 (18) 0.0309 (18) −0.0086 (17) −0.0103 (15)
C8 0.0479 (19) 0.114 (3) 0.058 (2) −0.036 (2) 0.0079 (17) −0.008 (2)
C4 0.073 (2) 0.074 (2) 0.057 (2) 0.006 (2) −0.0164 (18) −0.0215 (19)
C14 0.0529 (18) 0.077 (2) 0.0453 (17) −0.0288 (17) 0.0042 (14) −0.0083 (16)
C6 0.113 (4) 0.0426 (19) 0.121 (4) −0.017 (2) 0.073 (3) −0.004 (2)
C3 0.066 (2) 0.082 (2) 0.060 (2) 0.0230 (19) −0.0200 (18) −0.0055 (19)

Geometric parameters (Å, °)

Fe1—C6 2.030 (4) C1—C5 1.393 (4)
Fe1—C7 2.034 (3) C10—C9 1.361 (5)
Fe1—C13 2.036 (3) C10—C7 1.376 (5)
Fe1—C8 2.037 (3) C10—H10A 0.9800
Fe1—C10 2.046 (3) C5—C4 1.376 (4)
Fe1—C9 2.050 (3) C5—H5A 0.9300
Fe1—C16 2.053 (3) C2—C3 1.378 (5)
Fe1—C15 2.055 (3) C2—H2A 0.9300
Fe1—C14 2.056 (3) C13—C14 1.414 (4)
Fe1—C12 2.061 (3) C13—H13A 0.9800
C12—C16 1.431 (4) C7—C6 1.423 (6)
C12—C13 1.441 (4) C7—H7A 0.9800
C12—C11 1.445 (4) N2—C4 1.321 (5)
C11—C17 1.347 (4) N2—C3 1.336 (5)
C11—H11A 0.9300 C9—C8 1.371 (6)
C17—C18 1.443 (4) C9—H9A 0.9800
C17—C1 1.480 (4) C8—C6 1.421 (6)
C18—N1 1.150 (4) C8—H8A 0.9800
C16—C15 1.422 (4) C4—H4A 0.9300
C16—H16A 0.9800 C14—H14A 0.9800
C15—C14 1.414 (5) C6—H6A 0.9800
C15—H15A 0.9800 C3—H3A 0.9300
C1—C2 1.386 (4)
C6—Fe1—C7 40.99 (18) C14—C15—C16 108.8 (3)
C6—Fe1—C13 163.0 (2) C14—C15—Fe1 69.91 (17)
C7—Fe1—C13 154.67 (17) C16—C15—Fe1 69.67 (16)
C6—Fe1—C8 40.91 (19) C14—C15—H15A 125.6
C7—Fe1—C8 68.01 (16) C16—C15—H15A 125.6
C13—Fe1—C8 125.95 (17) Fe1—C15—H15A 125.6
C6—Fe1—C10 67.09 (16) C2—C1—C5 116.1 (3)
C7—Fe1—C10 39.40 (16) C2—C1—C17 122.7 (3)
C13—Fe1—C10 121.59 (14) C5—C1—C17 121.2 (3)
C8—Fe1—C10 66.19 (15) C9—C10—C7 109.6 (4)
C6—Fe1—C9 67.04 (16) C9—C10—Fe1 70.72 (19)
C7—Fe1—C9 66.39 (15) C7—C10—Fe1 69.8 (2)
C13—Fe1—C9 109.61 (14) C9—C10—H10A 125.2
C8—Fe1—C9 39.21 (16) C7—C10—H10A 125.2
C10—Fe1—C9 38.82 (14) Fe1—C10—H10A 125.2
C6—Fe1—C16 109.02 (14) C4—C5—C1 119.7 (3)
C7—Fe1—C16 123.12 (15) C4—C5—H5A 120.2
C13—Fe1—C16 68.68 (14) C1—C5—H5A 120.2
C8—Fe1—C16 126.27 (15) C3—C2—C1 119.9 (3)
C10—Fe1—C16 157.78 (14) C3—C2—H2A 120.0
C9—Fe1—C16 161.98 (14) C1—C2—H2A 120.0
C6—Fe1—C15 122.00 (18) C14—C13—C12 108.5 (3)
C7—Fe1—C15 105.45 (14) C14—C13—Fe1 70.54 (18)
C13—Fe1—C15 67.94 (14) C12—C13—Fe1 70.35 (16)
C8—Fe1—C15 160.24 (18) C14—C13—H13A 125.7
C10—Fe1—C15 121.34 (14) C12—C13—H13A 125.7
C9—Fe1—C15 156.93 (15) Fe1—C13—H13A 125.7
C16—Fe1—C15 40.50 (12) C10—C7—C6 107.2 (4)
C6—Fe1—C14 155.8 (2) C10—C7—Fe1 70.8 (2)
C7—Fe1—C14 118.82 (16) C6—C7—Fe1 69.3 (2)
C13—Fe1—C14 40.42 (13) C10—C7—H7A 126.4
C8—Fe1—C14 159.43 (18) C6—C7—H7A 126.4
C10—Fe1—C14 105.82 (14) Fe1—C7—H7A 126.4
C9—Fe1—C14 122.86 (16) C4—N2—C3 116.0 (3)
C16—Fe1—C14 68.28 (14) C10—C9—C8 109.4 (4)
C15—Fe1—C14 40.23 (14) C10—C9—Fe1 70.5 (2)
C6—Fe1—C12 126.17 (16) C8—C9—Fe1 69.9 (2)
C7—Fe1—C12 161.19 (16) C10—C9—H9A 125.3
C13—Fe1—C12 41.18 (11) C8—C9—H9A 125.3
C8—Fe1—C12 111.72 (13) Fe1—C9—H9A 125.3
C10—Fe1—C12 159.07 (14) C9—C8—C6 107.6 (4)
C9—Fe1—C12 126.18 (13) C9—C8—Fe1 70.9 (2)
C16—Fe1—C12 40.71 (11) C6—C8—Fe1 69.3 (2)
C15—Fe1—C12 68.16 (12) C9—C8—H8A 126.2
C14—Fe1—C12 68.51 (11) C6—C8—H8A 126.2
C16—C12—C13 106.9 (3) Fe1—C8—H8A 126.2
C16—C12—C11 131.2 (3) N2—C4—C5 124.4 (3)
C13—C12—C11 121.9 (3) N2—C4—H4A 117.8
C16—C12—Fe1 69.33 (16) C5—C4—H4A 117.8
C13—C12—Fe1 68.48 (15) C13—C14—C15 107.9 (3)
C11—C12—Fe1 125.30 (18) C13—C14—Fe1 69.05 (17)
C17—C11—C12 130.0 (3) C15—C14—Fe1 69.85 (18)
C17—C11—H11A 115.0 C13—C14—H14A 126.1
C12—C11—H11A 115.0 C15—C14—H14A 126.1
C11—C17—C18 120.2 (3) Fe1—C14—H14A 126.1
C11—C17—C1 124.5 (3) C8—C6—C7 106.3 (3)
C18—C17—C1 115.3 (2) C8—C6—Fe1 69.8 (2)
N1—C18—C17 177.9 (3) C7—C6—Fe1 69.7 (2)
C15—C16—C12 107.9 (3) C8—C6—H6A 126.8
C15—C16—Fe1 69.83 (17) C7—C6—H6A 126.8
C12—C16—Fe1 69.96 (15) Fe1—C6—H6A 126.8
C15—C16—H16A 126.1 N2—C3—C2 123.9 (3)
C12—C16—H16A 126.1 N2—C3—H3A 118.1
Fe1—C16—H16A 126.1 C2—C3—H3A 118.1
C6—Fe1—C12—C16 76.7 (3) C10—Fe1—C13—C12 164.24 (18)
C7—Fe1—C12—C16 35.5 (5) C9—Fe1—C13—C12 123.00 (19)
C13—Fe1—C12—C16 −118.8 (3) C16—Fe1—C13—C12 −37.84 (16)
C8—Fe1—C12—C16 120.9 (2) C15—Fe1—C13—C12 −81.58 (19)
C10—Fe1—C12—C16 −159.2 (3) C14—Fe1—C13—C12 −119.0 (3)
C9—Fe1—C12—C16 163.0 (2) C9—C10—C7—C6 0.3 (4)
C15—Fe1—C12—C16 −37.80 (19) Fe1—C10—C7—C6 60.1 (2)
C14—Fe1—C12—C16 −81.2 (2) C9—C10—C7—Fe1 −59.7 (2)
C6—Fe1—C12—C13 −164.5 (2) C6—Fe1—C7—C10 117.8 (3)
C7—Fe1—C12—C13 154.3 (4) C13—Fe1—C7—C10 −50.0 (4)
C8—Fe1—C12—C13 −120.3 (2) C8—Fe1—C7—C10 78.8 (3)
C10—Fe1—C12—C13 −40.4 (4) C9—Fe1—C7—C10 36.1 (2)
C9—Fe1—C12—C13 −78.2 (2) C16—Fe1—C7—C10 −161.3 (2)
C16—Fe1—C12—C13 118.8 (3) C15—Fe1—C7—C10 −120.9 (2)
C15—Fe1—C12—C13 81.0 (2) C14—Fe1—C7—C10 −79.7 (3)
C14—Fe1—C12—C13 37.6 (2) C12—Fe1—C7—C10 171.8 (3)
C6—Fe1—C12—C11 −49.9 (3) C13—Fe1—C7—C6 −167.7 (3)
C7—Fe1—C12—C11 −91.0 (5) C8—Fe1—C7—C6 −38.9 (2)
C13—Fe1—C12—C11 114.6 (3) C10—Fe1—C7—C6 −117.8 (3)
C8—Fe1—C12—C11 −5.7 (3) C9—Fe1—C7—C6 −81.6 (3)
C10—Fe1—C12—C11 74.3 (5) C16—Fe1—C7—C6 80.9 (3)
C9—Fe1—C12—C11 36.4 (3) C15—Fe1—C7—C6 121.3 (3)
C16—Fe1—C12—C11 −126.6 (3) C14—Fe1—C7—C6 162.6 (2)
C15—Fe1—C12—C11 −164.4 (3) C12—Fe1—C7—C6 54.0 (5)
C14—Fe1—C12—C11 152.2 (3) C7—C10—C9—C8 0.0 (4)
C16—C12—C11—C17 14.0 (5) Fe1—C10—C9—C8 −59.2 (2)
C13—C12—C11—C17 −168.5 (3) C7—C10—C9—Fe1 59.2 (2)
Fe1—C12—C11—C17 106.6 (3) C6—Fe1—C9—C10 −81.5 (3)
C12—C11—C17—C18 −1.2 (5) C7—Fe1—C9—C10 −36.7 (3)
C12—C11—C17—C1 179.4 (3) C13—Fe1—C9—C10 116.4 (2)
C13—C12—C16—C15 1.4 (3) C8—Fe1—C9—C10 −120.3 (4)
C11—C12—C16—C15 179.2 (3) C16—Fe1—C9—C10 −162.4 (4)
Fe1—C12—C16—C15 59.8 (2) C15—Fe1—C9—C10 36.8 (5)
C13—C12—C16—Fe1 −58.40 (19) C14—Fe1—C9—C10 73.4 (3)
C11—C12—C16—Fe1 119.4 (3) C12—Fe1—C9—C10 159.5 (2)
C6—Fe1—C16—C15 117.3 (3) C6—Fe1—C9—C8 38.8 (3)
C7—Fe1—C16—C15 74.1 (3) C7—Fe1—C9—C8 83.6 (3)
C13—Fe1—C16—C15 −80.6 (2) C13—Fe1—C9—C8 −123.3 (2)
C8—Fe1—C16—C15 159.7 (2) C10—Fe1—C9—C8 120.3 (4)
C10—Fe1—C16—C15 41.5 (5) C16—Fe1—C9—C8 −42.1 (6)
C9—Fe1—C16—C15 −168.5 (4) C15—Fe1—C9—C8 157.1 (4)
C14—Fe1—C16—C15 −37.0 (2) C14—Fe1—C9—C8 −166.2 (2)
C12—Fe1—C16—C15 −118.8 (3) C12—Fe1—C9—C8 −80.1 (3)
C6—Fe1—C16—C12 −123.8 (2) C10—C9—C8—C6 −0.3 (4)
C7—Fe1—C16—C12 −167.1 (2) Fe1—C9—C8—C6 −59.9 (2)
C13—Fe1—C16—C12 38.27 (17) C10—C9—C8—Fe1 59.6 (3)
C8—Fe1—C16—C12 −81.4 (3) C6—Fe1—C8—C9 −118.2 (3)
C10—Fe1—C16—C12 160.4 (4) C7—Fe1—C8—C9 −79.1 (3)
C9—Fe1—C16—C12 −49.7 (5) C13—Fe1—C8—C9 76.5 (3)
C15—Fe1—C16—C12 118.8 (3) C10—Fe1—C8—C9 −36.3 (2)
C14—Fe1—C16—C12 81.86 (19) C16—Fe1—C8—C9 165.1 (2)
C12—C16—C15—C14 −0.7 (3) C15—Fe1—C8—C9 −153.2 (4)
Fe1—C16—C15—C14 59.1 (2) C14—Fe1—C8—C9 34.6 (5)
C12—C16—C15—Fe1 −59.86 (19) C12—Fe1—C8—C9 121.1 (2)
C6—Fe1—C15—C14 157.9 (2) C7—Fe1—C8—C6 39.0 (3)
C7—Fe1—C15—C14 116.6 (2) C13—Fe1—C8—C6 −165.3 (2)
C13—Fe1—C15—C14 −37.55 (18) C10—Fe1—C8—C6 81.9 (3)
C8—Fe1—C15—C14 −175.7 (4) C9—Fe1—C8—C6 118.2 (3)
C10—Fe1—C15—C14 77.0 (2) C16—Fe1—C8—C6 −76.7 (3)
C9—Fe1—C15—C14 50.9 (4) C15—Fe1—C8—C6 −35.1 (5)
C16—Fe1—C15—C14 −120.1 (3) C14—Fe1—C8—C6 152.8 (4)
C12—Fe1—C15—C14 −82.1 (2) C12—Fe1—C8—C6 −120.7 (3)
C6—Fe1—C15—C16 −82.0 (3) C3—N2—C4—C5 −1.1 (6)
C7—Fe1—C15—C16 −123.3 (2) C1—C5—C4—N2 0.0 (6)
C13—Fe1—C15—C16 82.6 (2) C12—C13—C14—C15 1.1 (3)
C8—Fe1—C15—C16 −55.6 (5) Fe1—C13—C14—C15 −59.3 (2)
C10—Fe1—C15—C16 −162.9 (2) C12—C13—C14—Fe1 60.35 (19)
C9—Fe1—C15—C16 171.0 (3) C16—C15—C14—C13 −0.2 (3)
C14—Fe1—C15—C16 120.1 (3) Fe1—C15—C14—C13 58.8 (2)
C12—Fe1—C15—C16 37.99 (19) C16—C15—C14—Fe1 −59.0 (2)
C11—C17—C1—C2 −2.4 (4) C6—Fe1—C14—C13 −170.4 (3)
C18—C17—C1—C2 178.2 (3) C7—Fe1—C14—C13 160.9 (2)
C11—C17—C1—C5 176.5 (3) C8—Fe1—C14—C13 56.5 (4)
C18—C17—C1—C5 −3.0 (4) C10—Fe1—C14—C13 120.5 (2)
C6—Fe1—C10—C9 81.4 (3) C9—Fe1—C14—C13 81.8 (2)
C7—Fe1—C10—C9 120.4 (4) C16—Fe1—C14—C13 −82.2 (2)
C13—Fe1—C10—C9 −82.2 (3) C15—Fe1—C14—C13 −119.4 (3)
C8—Fe1—C10—C9 36.6 (3) C12—Fe1—C14—C13 −38.25 (18)
C16—Fe1—C10—C9 165.7 (3) C6—Fe1—C14—C15 −51.0 (4)
C15—Fe1—C10—C9 −164.0 (2) C7—Fe1—C14—C15 −79.7 (2)
C14—Fe1—C10—C9 −123.2 (2) C13—Fe1—C14—C15 119.4 (3)
C12—Fe1—C10—C9 −52.2 (5) C8—Fe1—C14—C15 175.9 (4)
C6—Fe1—C10—C7 −39.1 (3) C10—Fe1—C14—C15 −120.1 (2)
C13—Fe1—C10—C7 157.4 (2) C9—Fe1—C14—C15 −158.78 (19)
C8—Fe1—C10—C7 −83.8 (3) C16—Fe1—C14—C15 37.22 (19)
C9—Fe1—C10—C7 −120.4 (4) C12—Fe1—C14—C15 81.2 (2)
C16—Fe1—C10—C7 45.3 (5) C9—C8—C6—C7 0.5 (4)
C15—Fe1—C10—C7 75.5 (3) Fe1—C8—C6—C7 −60.4 (2)
C14—Fe1—C10—C7 116.4 (3) C9—C8—C6—Fe1 60.9 (2)
C12—Fe1—C10—C7 −172.6 (3) C10—C7—C6—C8 −0.5 (4)
C2—C1—C5—C4 1.4 (5) Fe1—C7—C6—C8 60.5 (3)
C17—C1—C5—C4 −177.6 (3) C10—C7—C6—Fe1 −61.0 (2)
C5—C1—C2—C3 −1.7 (5) C7—Fe1—C6—C8 −117.1 (3)
C17—C1—C2—C3 177.2 (3) C13—Fe1—C6—C8 44.7 (6)
C16—C12—C13—C14 −1.5 (3) C10—Fe1—C6—C8 −79.6 (3)
C11—C12—C13—C14 −179.6 (2) C9—Fe1—C6—C8 −37.2 (2)
Fe1—C12—C13—C14 −60.5 (2) C16—Fe1—C6—C8 123.9 (2)
C16—C12—C13—Fe1 58.94 (19) C15—Fe1—C6—C8 166.8 (2)
C11—C12—C13—Fe1 −119.1 (2) C14—Fe1—C6—C8 −156.9 (3)
C6—Fe1—C13—C14 166.5 (5) C12—Fe1—C6—C8 81.7 (3)
C7—Fe1—C13—C14 −42.0 (4) C13—Fe1—C6—C7 161.9 (4)
C8—Fe1—C13—C14 −158.8 (2) C8—Fe1—C6—C7 117.1 (3)
C10—Fe1—C13—C14 −76.8 (2) C10—Fe1—C6—C7 37.6 (2)
C9—Fe1—C13—C14 −118.0 (2) C9—Fe1—C6—C7 79.9 (2)
C16—Fe1—C13—C14 81.1 (2) C16—Fe1—C6—C7 −119.0 (2)
C15—Fe1—C13—C14 37.38 (19) C15—Fe1—C6—C7 −76.1 (3)
C12—Fe1—C13—C14 119.0 (3) C14—Fe1—C6—C7 −39.8 (5)
C6—Fe1—C13—C12 47.5 (6) C12—Fe1—C6—C7 −161.1 (2)
C7—Fe1—C13—C12 −161.0 (3) C4—N2—C3—C2 0.8 (6)
C8—Fe1—C13—C12 82.3 (2) C1—C2—C3—N2 0.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14A···N2i 0.98 2.57 3.476 (4) 153

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2092).

References

  1. Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev.105, 2527–2571. [DOI] [PubMed]
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Shao, L., Hu, Y., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, m1837–m1839.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023106/kj2092sup1.cif

e-64-m1072-sup1.cif (26.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023106/kj2092Isup2.hkl

e-64-m1072-Isup2.hkl (158.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES