Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):m1076. doi: 10.1107/S1600536808022964

catena-Poly[{μ-cyanido-bis­[(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)copper(I)]}-μ-cyanido-copper(I)-μ-cyanido]

Shi-Hong Lin a, Ying-Yi Yang a, Seik Weng Ng b,*
PMCID: PMC2961986  PMID: 21203056

Abstract

In the title compound, [Cu3(CN)3(C12H12N2)2], two 2,2′-bipyridine N,N′-chelated CuI atoms are linked by a cyanide bridge that lies about a center of inversion; the CuI atom exists in a tetra­hedral coordination geometry. This dinuclear entity is linked to another CuI atom that lies on a twofold rotation axis by another cyanide bridge, these bridges giving rise to the formation of a linear chain motif.

Related literature

Some copper(I) cyanide adducts with 2,2′-bipyridine-like ligands that adopt chain structures in which the cyanide group functions as a bridge are tris­cyano-bis­(2,2′-biquinoline)tri­cop­per (Chesnut et al., 2001; Dessy et al., 1985), tetra­kiscyano­(2,2′-biquinoline)tetra­copper (Chesnut & Zubieta, 1998) and bis­cyano-(4,4′-diphenyl-2,2′-bipyridine)dicopper (Chesnut et al., 2001).graphic file with name e-64-m1076-scheme1.jpg

Experimental

Crystal data

  • [Cu3(CN)3(C12H12N2)2]

  • M r = 637.15

  • Monoclinic, Inline graphic

  • a = 10.7196 (7) Å

  • b = 12.3700 (9) Å

  • c = 20.9182 (14) Å

  • β = 100.146 (1)°

  • V = 2730.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.540, T max = 0.705

  • 8685 measured reflections

  • 3125 independent reflections

  • 2491 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.110

  • S = 1.03

  • 3125 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022964/rk2103sup1.cif

e-64-m1076-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022964/rk2103Isup2.hkl

e-64-m1076-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Shantou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The cyanide group functions as a bridging group in a number of copper(I) adducts of 2,2'-bipyridine type of N-heterocycles. Those who crystal structure have been described include the triscyano-bis(2,2'-biquinoline)tricopper (Chesnut et al., 2001; Dessy et al., 1985), tetrakiscyano(2,2'-biquinoline)tetracopper (Chesnut & Zubieta, 1998) and biscyano-(4,4'-diphenyl-2,2'-bipyridine)dicopper (Chesnut et al., 2001).

The copper(I) cyanide adduct with 4,4'-dimethyl-2,2'-biyridine (Scheme 1, Fig. 1) adopts a similar chain motif. Two N-heterocycle-chelated copper(I) atoms are linked by a cyanide bridge that lies about a center-of-inversion; the copper(I) atom exists in a tetrahedral coordination geometry. This dinuclear entity is linked to copper(I) atom that lies on a twofold rotation axis by another cyanide bridge.

Experimental

4,4'-Dimethyl-2,2'-bipyridine (0.055 g, 0.3 mmol), cuprous cyanide (0.009 g, 0.1 mmol) and acetonitrile (8 ml) were placed in a 15-ml, teflon-lined autoclave. It was heated at 453 K for 72 hours, then was cooled to 333 K at a rate of 5 K per hour and then kept at this temperature for a further 10 hours before being cooled to room temperature. Red prisms were in 50% yield based on the N-heterocycle.

Refinement

The component atoms of the cyanide groups were each refined as a 50%:50% mixture of carbon and nitrogen. The pair of C/N atoms were restrained to the same site and also to have the same temperature factors. Hydrogen atoms were placed at calculated positions in the riding model approximation with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of a portion of the linear chain motif; probability levels are set at 50%.

Crystal data

[Cu3(CN)3(C12H12N2)2] F000 = 1288
Mr = 637.15 Dx = 1.550 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2750 reflections
a = 10.7196 (7) Å θ = 2.5–27.0º
b = 12.3700 (9) Å µ = 2.34 mm1
c = 20.9182 (14) Å T = 295 (2) K
β = 100.146 (1)º Block, red
V = 2730.4 (3) Å3 0.30 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 3125 independent reflections
Radiation source: fine-focus sealed tube 2491 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.024
T = 295(2) K θmax = 27.5º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.540, Tmax = 0.705 k = −16→15
8685 measured reflections l = −16→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.110   w = 1/[σ2(Fo2) + (0.065P)2 + 0.8323P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3125 reflections Δρmax = 0.53 e Å3
170 parameters Δρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.74268 (3) 0.41078 (2) 0.072850 (16) 0.04716 (14)
Cu2 0.5000 0.41827 (4) 0.2500 0.05469 (16)
N1 0.75592 (19) 0.54384 (16) 0.01065 (10) 0.0420 (5)
N2 0.92273 (18) 0.47469 (15) 0.11124 (9) 0.0406 (4)
N3 0.6442 (3) 0.41773 (18) 0.14085 (14) 0.0519 (6) 0.50
N4 0.5915 (2) 0.4184 (2) 0.18400 (12) 0.0502 (6) 0.50
N5 0.7489 (2) 0.28632 (17) 0.01721 (11) 0.0487 (6) 0.50
C3' 0.6442 (3) 0.41773 (18) 0.14085 (14) 0.0519 (6) 0.50
C4' 0.5915 (2) 0.4184 (2) 0.18400 (12) 0.0502 (6) 0.50
C5' 0.7489 (2) 0.28632 (17) 0.01721 (11) 0.0487 (6) 0.50
C1 0.6717 (3) 0.5725 (2) −0.04135 (14) 0.0531 (6)
H1 0.5932 0.5384 −0.0485 0.064*
C2 0.6951 (3) 0.6501 (2) −0.08494 (13) 0.0562 (7)
H2 0.6325 0.6680 −0.1200 0.067*
C3 0.8105 (3) 0.7011 (2) −0.07670 (12) 0.0493 (6)
C4 0.8992 (2) 0.67121 (18) −0.02273 (12) 0.0450 (6)
H4 0.9791 0.7030 −0.0154 0.054*
C5 0.8687 (2) 0.59363 (16) 0.02044 (12) 0.0385 (5)
C6 0.8409 (4) 0.7858 (2) −0.12307 (15) 0.0699 (9)
H6A 0.8117 0.7623 −0.1669 0.105*
H6B 0.9309 0.7970 −0.1164 0.105*
H6C 0.7997 0.8523 −0.1156 0.105*
C7 0.9594 (2) 0.56084 (18) 0.07973 (11) 0.0391 (5)
C8 1.0699 (2) 0.61388 (19) 0.10154 (13) 0.0461 (6)
H8 1.0910 0.6739 0.0789 0.055*
C9 1.1516 (3) 0.5801 (2) 0.15691 (14) 0.0523 (6)
C10 1.1131 (3) 0.4918 (2) 0.18924 (14) 0.0559 (7)
H10 1.1634 0.4661 0.2270 0.067*
C11 1.0006 (3) 0.4430 (2) 0.16498 (13) 0.0516 (6)
H11 0.9766 0.3837 0.1873 0.062*
C12 1.2752 (3) 0.6366 (3) 0.18039 (18) 0.0781 (10)
H12A 1.3038 0.6203 0.2255 0.117*
H12B 1.2635 0.7133 0.1751 0.117*
H12C 1.3372 0.6125 0.1556 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0535 (2) 0.0446 (2) 0.0483 (2) −0.01261 (12) 0.02281 (16) −0.00397 (12)
Cu2 0.0494 (3) 0.0793 (4) 0.0406 (3) 0.000 0.0223 (2) 0.000
N1 0.0483 (11) 0.0401 (10) 0.0402 (12) −0.0070 (8) 0.0149 (9) −0.0055 (8)
N2 0.0469 (10) 0.0416 (10) 0.0376 (11) −0.0031 (8) 0.0193 (9) 0.0007 (8)
N3 0.0530 (13) 0.0527 (14) 0.0522 (15) −0.0098 (10) 0.0152 (12) −0.0068 (10)
N4 0.0469 (13) 0.0700 (16) 0.0387 (13) −0.0049 (10) 0.0214 (11) −0.0049 (10)
N5 0.0560 (13) 0.0453 (12) 0.0514 (15) −0.0154 (10) 0.0281 (11) −0.0066 (9)
C3' 0.0530 (13) 0.0527 (14) 0.0522 (15) −0.0098 (10) 0.0152 (12) −0.0068 (10)
C4' 0.0469 (13) 0.0700 (16) 0.0387 (13) −0.0049 (10) 0.0214 (11) −0.0049 (10)
C5' 0.0560 (13) 0.0453 (12) 0.0514 (15) −0.0154 (10) 0.0281 (11) −0.0066 (9)
C1 0.0539 (15) 0.0559 (15) 0.0491 (16) −0.0090 (12) 0.0082 (13) −0.0071 (12)
C2 0.0655 (16) 0.0599 (16) 0.0415 (15) 0.0020 (13) 0.0047 (13) 0.0003 (12)
C3 0.0678 (16) 0.0432 (12) 0.0409 (14) 0.0022 (12) 0.0206 (13) 0.0002 (10)
C4 0.0525 (14) 0.0423 (13) 0.0451 (14) −0.0055 (10) 0.0221 (11) −0.0005 (10)
C5 0.0457 (12) 0.0370 (11) 0.0365 (13) −0.0020 (9) 0.0175 (10) −0.0035 (9)
C6 0.098 (2) 0.0630 (18) 0.0550 (19) 0.0058 (16) 0.0312 (17) 0.0142 (14)
C7 0.0456 (13) 0.0367 (11) 0.0400 (13) −0.0031 (9) 0.0216 (11) −0.0021 (9)
C8 0.0501 (14) 0.0424 (12) 0.0482 (15) −0.0047 (10) 0.0153 (12) 0.0046 (10)
C9 0.0506 (14) 0.0537 (15) 0.0530 (17) −0.0049 (11) 0.0103 (12) −0.0013 (11)
C10 0.0554 (15) 0.0640 (17) 0.0473 (16) 0.0013 (13) 0.0066 (12) 0.0101 (13)
C11 0.0628 (16) 0.0484 (13) 0.0474 (15) −0.0050 (12) 0.0201 (13) 0.0069 (12)
C12 0.0605 (18) 0.080 (2) 0.086 (2) −0.0172 (16) −0.0074 (17) 0.0093 (19)

Geometric parameters (Å, °)

Cu1—N1 2.118 (2) C4—C5 1.395 (3)
Cu1—N2 2.109 (2) C4—H4 0.9300
Cu1—N3 1.917 (3) C5—C7 1.491 (3)
Cu1—N5 1.938 (2) C6—H6A 0.9600
Cu2—N4 1.829 (2) C6—H6B 0.9600
Cu2—N4i 1.829 (2) C6—H6C 0.9600
N1—C1 1.333 (3) C7—C8 1.361 (4)
N1—C5 1.340 (3) C8—C9 1.388 (4)
N2—C11 1.336 (3) C8—H8 0.9300
N2—C7 1.347 (3) C9—C10 1.385 (4)
N3—N4 1.146 (4) C9—C12 1.502 (4)
N5—C5'ii 1.154 (4) C10—C11 1.364 (4)
C1—C2 1.377 (4) C10—H10 0.9300
C1—H1 0.9300 C11—H11 0.9300
C2—C3 1.372 (4) C12—H12A 0.9600
C2—H2 0.9300 C12—H12B 0.9600
C3—C4 1.392 (4) C12—H12C 0.9600
C3—C6 1.503 (4)
N3—Cu1—N5 124.25 (9) N1—C5—C4 121.7 (2)
N3—Cu1—N2 106.70 (9) N1—C5—C7 116.1 (2)
N5—Cu1—N2 113.61 (9) C4—C5—C7 122.2 (2)
N3—Cu1—N1 121.75 (9) C3—C6—H6A 109.5
N5—Cu1—N1 103.61 (9) C3—C6—H6B 109.5
N2—Cu1—N1 77.69 (7) H6A—C6—H6B 109.5
N4—Cu2—C4'i 179.88 (15) C3—C6—H6C 109.5
C4'i—Cu2—N4i 0.00 (12) H6A—C6—H6C 109.5
C1—N1—C5 117.7 (2) H6B—C6—H6C 109.5
C1—N1—Cu1 126.79 (17) N2—C7—C8 121.9 (2)
C5—N1—Cu1 114.80 (16) N2—C7—C5 114.8 (2)
C11—N2—C7 116.8 (2) C8—C7—C5 123.3 (2)
C11—N2—Cu1 127.21 (16) C7—C8—C9 121.3 (2)
C7—N2—Cu1 115.86 (16) C7—C8—H8 119.4
N4—N3—Cu1 175.6 (3) C9—C8—H8 119.4
N3—N4—Cu2 177.1 (3) C10—C9—C8 116.5 (2)
C5'ii—N5—Cu1 178.3 (3) C10—C9—C12 121.9 (3)
N5ii—N5—Cu1 178.3 (3) C8—C9—C12 121.6 (3)
N1—C1—C2 123.4 (2) C11—C10—C9 119.2 (3)
N1—C1—H1 118.3 C11—C10—H10 120.4
C2—C1—H1 118.3 C9—C10—H10 120.4
C3—C2—C1 120.2 (3) N2—C11—C10 124.3 (2)
C3—C2—H2 119.9 N2—C11—H11 117.8
C1—C2—H2 119.9 C10—C11—H11 117.8
C2—C3—C4 116.8 (2) C9—C12—H12A 109.5
C2—C3—C6 122.2 (3) C9—C12—H12B 109.5
C4—C3—C6 120.9 (2) H12A—C12—H12B 109.5
C3—C4—C5 120.2 (2) C9—C12—H12C 109.5
C3—C4—H4 119.9 H12A—C12—H12C 109.5
C5—C4—H4 119.9 H12B—C12—H12C 109.5
N3—Cu1—N1—C1 −81.2 (2) C1—N1—C5—C7 178.9 (2)
N5—Cu1—N1—C1 64.9 (2) Cu1—N1—C5—C7 −9.9 (2)
N2—Cu1—N1—C1 176.6 (2) C3—C4—C5—N1 1.8 (3)
N3—Cu1—N1—C5 108.54 (18) C3—C4—C5—C7 −178.5 (2)
N5—Cu1—N1—C5 −105.30 (17) C11—N2—C7—C8 −0.4 (3)
N2—Cu1—N1—C5 6.36 (15) Cu1—N2—C7—C8 176.04 (18)
N3—Cu1—N2—C11 54.7 (2) C11—N2—C7—C5 −179.5 (2)
N5—Cu1—N2—C11 −85.9 (2) Cu1—N2—C7—C5 −3.0 (2)
N1—Cu1—N2—C11 174.5 (2) N1—C5—C7—N2 8.7 (3)
N3—Cu1—N2—C7 −121.34 (17) C4—C5—C7—N2 −171.0 (2)
N5—Cu1—N2—C7 98.09 (17) N1—C5—C7—C8 −170.4 (2)
N1—Cu1—N2—C7 −1.55 (15) C4—C5—C7—C8 10.0 (4)
C5—N1—C1—C2 0.0 (4) N2—C7—C8—C9 1.3 (4)
Cu1—N1—C1—C2 −170.0 (2) C5—C7—C8—C9 −179.7 (2)
N1—C1—C2—C3 1.1 (4) C7—C8—C9—C10 −1.5 (4)
C1—C2—C3—C4 −0.7 (4) C7—C8—C9—C12 178.5 (3)
C1—C2—C3—C6 179.7 (3) C8—C9—C10—C11 1.0 (4)
C2—C3—C4—C5 −0.7 (4) C12—C9—C10—C11 −179.1 (3)
C6—C3—C4—C5 179.0 (2) C7—N2—C11—C10 −0.2 (4)
C1—N1—C5—C4 −1.4 (3) Cu1—N2—C11—C10 −176.2 (2)
Cu1—N1—C5—C4 169.76 (17) C9—C10—C11—N2 −0.1 (5)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+3/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2103).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem., 1, 189–191.
  2. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Winconsin, USA.
  3. Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581–2586.
  4. Chesnut, D. J. & Zubieta, J. (1998). J. Chem. Soc. Chem. Commun. pp. 1707–1708.
  5. Dessy, G., Fares, V., Imperatori, P. & Morpurgo, G. O. (1985). J. Chem. Soc. Dalton Trans. pp. 1285–1288.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022964/rk2103sup1.cif

e-64-m1076-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022964/rk2103Isup2.hkl

e-64-m1076-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES