Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1373. doi: 10.1107/S1600536808019545

2-Methyl-3-(3-methyl­phen­yl)acrylic acid

Niaz Muhammad a, Saqib Ali a, M Nawaz Tahir b,*, Zia-ur-Rehman a
PMCID: PMC2962008  PMID: 21203095

Abstract

The crystal structure of the title compound, C11H12O2, consists of dimers which are formed due to inter­molecular O—H⋯O hydrogen bonding. The dimers are linked to each other by C—H⋯O hydrogen bonds, where C—H belongs to the benzene ring and the O atom is of a carbonyl group of an adjoining mol­ecule. There exist two inter­molecular C—H⋯O hydrogen bonds which form five-membered rings. There exist two π–π inter­actions between the benzene rings. The perpendicular distance in these inter­actions are 3.006 and 3.396 Å. There also exist C—H⋯π and C—O⋯π inter­actions.

Related literature

For related literature, see: Bernstein et al. (1995); Liu et al. (1999); Muhammad et al. (2007); Natella et al. (1999); Niaz et al. (2008); Parez-Alvarez et al. (2001); Wiesner et al. (2001).graphic file with name e-64-o1373-scheme1.jpg

Experimental

Crystal data

  • C11H12O2

  • M r = 176.21

  • Monoclinic, Inline graphic

  • a = 7.4430 (9) Å

  • b = 13.4094 (16) Å

  • c = 10.2746 (12) Å

  • β = 110.745 (4)°

  • V = 959.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (2) K

  • 0.26 × 0.18 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.980, T max = 0.986

  • 11342 measured reflections

  • 2820 independent reflections

  • 1075 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.185

  • S = 1.02

  • 2820 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019545/at2580sup1.cif

e-64-o1373-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019545/at2580Isup2.hkl

e-64-o1373-Isup2.hkl (135.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.611 (3) 160
C3—H3⋯O1 0.93 2.27 2.703 (3) 108
C8—H8⋯O1ii 0.93 2.59 3.394 (3) 145
C10—H10A⋯O2 0.96 2.31 2.783 (3) 109
C10—H10CCgiii 0.96 2.75 3.610 (3) 149
C1—O2⋯Cgiv 1.25 (1) 3.57 (1) 3.895 (3) 95 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge the the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for financial support to NM for PhD studies under the Indigenous Scholarship Scheme.

supplementary crystallographic information

Comment

Cinnamic acids and their derivatives have been studied for their pharmacological properties, including hepatoprotactive (Parez-Alvarez et al., 2001), antimalarial (Wiesner et al., 2001), antioxident (Natella et al., 1999) and antihyperglycemic activities (Liu et al., 1999). In continuation of our efforts to synthesize various derivatives of cinamic acids (Niaz et al., 2008) and their complexes, we herein report the structure of the title compound (I).

The crystal structure of 3-(4-bromophenyl)-2-methylacrylic acid (Muhammad et al., 2007) has been reported. The title compound (I) have a similar environment about the carboxylate group but the attachement of methyl instead of Br-atom is at meta-position instead of para-position.

In the crystal structure of the title compound, the C—C bonds are in the range 1.462 (3)–1.500 (3) Å, and C═C have a value of 1.339 (3) Å. The resonant C—O bonds have values of 1.250 (3) and 1.271 (3) Å. In the asymmetric unit, there are two interamolecular H-bonds of C—H···O type (Table 2, Fig 1). Due to these H-bonds, two five membered rings (O1/C1/C2/C3/H3···O1) and (O2/C1/C2/C10/H10A···O2) are formed. The intermolecular (O1—H1···O2i [symmetry code: i = -x, -y, -z + 1]) hydrogen bond forces the molecules into centrosymmetric dimers, forming a R22(8) motif (Bernstein et al. 1995). These dimers are linked to each other by the second intermolecular H-bonding, C8—H8···O2ii [symmetry code: ii = -x + 1, y + 1/2, -z + 1/2] as shown in Fig 2. There exist π–π interactions between the centroids (Cg) of benzene (C4—C9) rings of adjacent molecules. The Cg···Cgiii [symmetry code: iii = x, -y + 1/2, z - 1/2] and Cg···Cgiv [symmetry code: iv = x, -y + 1/2, z + 1/2] have a perpendicular distance of 3.006 and 3.396 Å, respectively. There exist also C10—H10C···Cgiv interaction, with a distance of 3.610 (3) Å between C10 and Cgiv. Similarly another π-interaction is present between C1–O2 and Cgv [symmetry code: v = x - 1, y, z] with a distance of 3.895 (3) Å between C1 and Cgv. The detail of these interactions is also included in Table 1.

Experimental

Compound (I) was prepared according to our previously reported method (Muhammad et al., 2007). A mixture of 3-methylbenzaldehyde (10 mmol, 1.18 ml), methylmalonic acid (2.36 g, 20 mmol) and piperidine (20 mmol, 1.98 ml) in pyridine (12.5 ml) solution was heated on a steam-bath for 24 h. The reaction mixture was cooled and added to a mixture of 25 ml of concentrated HCl and 50 g of ice. The precipitate formed in the acidified mixture was filtered off and washed with ice-cold water. The product was recrystallized from ethanol [yield; 90%, m.p. 321 K].

Refinement

All H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and O—H = 0.82 Å for hydroxyl O-atom, and constrained to ride on their parent atoms. The thermal parameters of methyl and hydroxyl H-atoms was taken 1.5 times while for all other H-atoms it was taken 1.2 times of the parent atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonds are shown by doted lines.

Fig. 2.

Fig. 2.

The packing figure (PLATON: Spek, 2003) which shows the dimeric nature of the compound and the interlinkages of the dimers.

Crystal data

C11H12O2 F000 = 376
Mr = 176.21 Dx = 1.220 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2820 reflections
a = 7.4430 (9) Å θ = 2.6–30.2º
b = 13.4094 (16) Å µ = 0.08 mm1
c = 10.2746 (12) Å T = 296 (2) K
β = 110.745 (4)º Prismatic, colourless
V = 959.0 (2) Å3 0.26 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker KAPPA APEXII CCD diffractometer 2820 independent reflections
Radiation source: fine-focus sealed tube 1075 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
Detector resolution: 7.2 pixels mm-1 θmax = 30.2º
T = 296(2) K θmin = 2.6º
ω scans h = −10→8
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −18→13
Tmin = 0.980, Tmax = 0.986 l = −10→14
11342 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056   w = 1/[σ2(Fo2) + (0.0657P)2 + 0.191P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.185 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.24 e Å3
2820 reflections Δρmin = −0.20 e Å3
120 parameters Extinction correction: empirical, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.006 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1630 (3) −0.00578 (12) 0.4174 (2) 0.0795 (8)
O2 0.0675 (2) 0.12222 (11) 0.51106 (18) 0.0699 (7)
C1 0.1639 (3) 0.08682 (17) 0.4441 (2) 0.0515 (8)
C2 0.2797 (3) 0.15393 (16) 0.3911 (2) 0.0484 (7)
C3 0.4010 (3) 0.11136 (17) 0.3377 (2) 0.0533 (8)
C4 0.5340 (3) 0.15354 (16) 0.2764 (2) 0.0497 (8)
C5 0.6214 (3) 0.08770 (17) 0.2126 (2) 0.0534 (8)
C6 0.7448 (3) 0.11877 (18) 0.1461 (2) 0.0553 (8)
C7 0.7829 (4) 0.21882 (19) 0.1470 (3) 0.0637 (9)
C8 0.7031 (4) 0.2856 (2) 0.2118 (3) 0.0699 (10)
C9 0.5794 (4) 0.25412 (17) 0.2757 (3) 0.0646 (9)
C10 0.2492 (3) 0.26372 (17) 0.4024 (3) 0.0658 (10)
C11 0.8342 (4) 0.0464 (2) 0.0760 (3) 0.0788 (11)
H1 0.10360 −0.03595 0.45872 0.0954*
H3 0.40046 0.04203 0.33992 0.0639*
H5 0.59610 0.01991 0.21458 0.0640*
H7 0.86445 0.24181 0.10285 0.0764*
H8 0.73305 0.35299 0.21244 0.0838*
H9 0.52556 0.30031 0.31872 0.0774*
H10A 0.15463 0.27413 0.44482 0.0988*
H10B 0.20537 0.29296 0.31123 0.0988*
H10C 0.36802 0.29433 0.45849 0.0988*
H11A 0.79146 −0.01992 0.08522 0.1182*
H11B 0.97157 0.04960 0.11877 0.1182*
H11C 0.79701 0.06301 −0.02083 0.1182*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1052 (15) 0.0487 (10) 0.1240 (17) −0.0062 (9) 0.0893 (13) −0.0004 (10)
O2 0.0786 (12) 0.0602 (11) 0.0958 (13) −0.0042 (8) 0.0617 (11) −0.0100 (9)
C1 0.0537 (13) 0.0479 (13) 0.0629 (15) 0.0003 (10) 0.0330 (12) −0.0028 (11)
C2 0.0460 (12) 0.0467 (12) 0.0570 (14) −0.0032 (10) 0.0239 (11) 0.0020 (11)
C3 0.0583 (14) 0.0481 (12) 0.0634 (15) −0.0046 (11) 0.0339 (12) 0.0003 (12)
C4 0.0510 (13) 0.0508 (12) 0.0549 (14) −0.0052 (10) 0.0282 (12) 0.0009 (11)
C5 0.0525 (14) 0.0513 (13) 0.0611 (15) −0.0035 (10) 0.0261 (12) 0.0021 (11)
C6 0.0490 (13) 0.0649 (16) 0.0589 (15) −0.0034 (11) 0.0278 (12) 0.0047 (12)
C7 0.0631 (15) 0.0742 (17) 0.0646 (16) −0.0139 (13) 0.0358 (14) 0.0053 (13)
C8 0.0812 (19) 0.0581 (15) 0.0849 (19) −0.0194 (13) 0.0475 (17) −0.0021 (13)
C9 0.0767 (17) 0.0525 (14) 0.0804 (18) −0.0098 (12) 0.0475 (15) −0.0045 (13)
C10 0.0574 (15) 0.0538 (15) 0.097 (2) −0.0010 (11) 0.0408 (15) −0.0017 (14)
C11 0.0757 (18) 0.088 (2) 0.091 (2) 0.0014 (15) 0.0521 (17) −0.0051 (16)

Geometric parameters (Å, °)

O1—C1 1.271 (3) C8—C9 1.373 (4)
O2—C1 1.250 (3) C3—H3 0.9300
O1—H1 0.8200 C5—H5 0.9300
C1—C2 1.477 (3) C7—H7 0.9300
C2—C10 1.500 (3) C8—H8 0.9300
C2—C3 1.339 (3) C9—H9 0.9300
C3—C4 1.462 (3) C10—H10A 0.9600
C4—C9 1.391 (3) C10—H10B 0.9600
C4—C5 1.391 (3) C10—H10C 0.9600
C5—C6 1.389 (3) C11—H11A 0.9600
C6—C7 1.371 (4) C11—H11B 0.9600
C6—C11 1.498 (4) C11—H11C 0.9600
C7—C8 1.370 (4)
C1—O1—H1 109.00 C4—C5—H5 119.00
O1—C1—O2 122.0 (2) C6—C5—H5 119.00
O1—C1—C2 118.3 (2) C6—C7—H7 119.00
O2—C1—C2 119.7 (2) C8—C7—H7 119.00
C1—C2—C10 116.4 (2) C7—C8—H8 120.00
C3—C2—C10 126.3 (2) C9—C8—H8 120.00
C1—C2—C3 117.2 (2) C4—C9—H9 120.00
C2—C3—C4 132.0 (2) C8—C9—H9 120.00
C3—C4—C9 125.5 (2) C2—C10—H10A 109.00
C5—C4—C9 117.3 (2) C2—C10—H10B 109.00
C3—C4—C5 117.3 (2) C2—C10—H10C 109.00
C4—C5—C6 122.9 (2) H10A—C10—H10B 109.00
C5—C6—C11 121.8 (2) H10A—C10—H10C 109.00
C7—C6—C11 120.8 (2) H10B—C10—H10C 109.00
C5—C6—C7 117.5 (2) C6—C11—H11A 109.00
C6—C7—C8 121.2 (3) C6—C11—H11B 109.00
C7—C8—C9 120.7 (2) C6—C11—H11C 110.00
C4—C9—C8 120.4 (2) H11A—C11—H11B 109.00
C2—C3—H3 114.00 H11A—C11—H11C 109.00
C4—C3—H3 114.00 H11B—C11—H11C 109.00
O1—C1—C2—C3 −10.6 (3) C9—C4—C5—C6 −2.0 (3)
O1—C1—C2—C10 169.3 (2) C3—C4—C9—C8 −178.4 (2)
O2—C1—C2—C3 170.7 (2) C5—C4—C9—C8 1.2 (4)
O2—C1—C2—C10 −9.4 (3) C4—C5—C6—C7 1.3 (3)
C1—C2—C3—C4 179.6 (2) C4—C5—C6—C11 −178.9 (2)
C10—C2—C3—C4 −0.3 (4) C5—C6—C7—C8 0.4 (4)
C2—C3—C4—C5 −171.3 (2) C11—C6—C7—C8 −179.5 (3)
C2—C3—C4—C9 8.3 (4) C6—C7—C8—C9 −1.2 (4)
C3—C4—C5—C6 177.54 (19) C7—C8—C9—C4 0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.83 2.611 (3) 160
C3—H3···O1 0.93 2.27 2.703 (3) 108
C8—H8···O1ii 0.93 2.59 3.394 (3) 145
C10—H10A···O2 0.96 2.31 2.783 (3) 109
C10—H10C···Cgiii 0.9600 2.75 3.610 (3) 149.00
C1—O2···Cgiv 1.250 (3) 3.574 (2) 3.895 (3) 95.38 (13)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2580).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Liu, I. M., Chi, T. C., Hsu, F. L., Chen, C. F. & Cheng, J. T. (1999). Planta Med.65, 712–714. [DOI] [PubMed]
  7. Muhammad, N., Zia-ur-Rehman,, Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o2174–o2175.
  8. Natella, F., Nardini, M., Felico, D. M. & Scaccini, C. (1999). J. Agric. Food Chem.47, 1453–1459. [DOI] [PubMed]
  9. Niaz, M., Tahir, M. N., Zia-ur-Rehman,, Ali, S. & Khan, I. U. (2008). Acta Cryst. E64, o733. [DOI] [PMC free article] [PubMed]
  10. Parez-Alvarez, V., Bobaddilla, R. A. & Muriel, P. (2001). J. Appl. Toxicol.21, 527–531. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Wiesner, J., Mitsch, A., Wissner, P., Jomaa, H. & Schlitzer, M. (2001). Bioorg. Med. Chem. Lett.11, 423–424. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019545/at2580sup1.cif

e-64-o1373-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019545/at2580Isup2.hkl

e-64-o1373-Isup2.hkl (135.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES