Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1376. doi: 10.1107/S1600536808017364

Diethyl {(4-methoxy­phen­yl)[5-(4-nitro­phen­yl)-1,3,4-thia­diazol-2-ylamino]meth­yl}phospho­nate

Li-He Yin a, Rong Wan a,*, Feng Han a, Bin Wang a, Jin-Tang Wang a
PMCID: PMC2962010  PMID: 21203097

Abstract

The title compound, C20H23N4O6PS, was synthesized by the reaction of N-(4-methoxy­benzyl­idene)-5-(4-nitro­phen­yl)-1,3,4-thia­diazol-2-amine and diethyl phosphite. The thia­diazole and nitro-substituted phenyl rings in the mol­ecule are approximately coplanar, the dihedral angle being 5.3 (2)°. The dihedral angle formed by the mean plane through all non-H atoms of both the thia­diazole and the nitro-substituted phenyl ring with the plane of the meth­oxy-substituted phenyl ring is 48.9 (2)°. In the crystal structure, mol­ecules form centrosymmetric dimers as a result of N—H⋯O bonds involving amine H and phosphine oxide O atoms.

Related literature

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999).graphic file with name e-64-o1376-scheme1.jpg

Experimental

Crystal data

  • C20H23N4O6PS

  • M r = 478.45

  • Monoclinic, Inline graphic

  • a = 11.481 (2) Å

  • b = 19.426 (4) Å

  • c = 11.960 (2) Å

  • β = 117.08 (3)°

  • V = 2375.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.930, T max = 0.976

  • 4497 measured reflections

  • 4276 independent reflections

  • 2330 reflections with I > 2σ(I)

  • R int = 0.064

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.146

  • S = 1.03

  • 4276 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius,1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017364/ya2071sup1.cif

e-64-o1376-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017364/ya2071Isup2.hkl

e-64-o1376-Isup2.hkl (209.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.86 1.94 2.782 (6) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Professor Hua-Qin Wang of Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of biologically important compounds, which often exhibit insecticidal, fungicidal and other biological activities (Nakagawa et al., 1996; Wang et al., 1999).

We report here the X-ray structure of the title compound,(I)(Fig. 1). The thiadiazole and nitro-substituted phenyl rings in the molecule of (I) are approximately coplanar: the dihedral angle between the C11—C16 and S/C10/N2/N3/C9 planes being 5.3 (2)°, the maximum deviation from the mean plane N1/C9/C10/N2/N3/S/C11/C12/C13/C14/C15/C16 does not exceed 0.11 Å. The dihedral angle formed by the latter plane with the plane of the methoxy- substituted phenyl ring C2—C7 is equal to 48.9 (2) °.

In the crystal structure, molecules of (I) form centrosymmetric dimers due to N—H···O bonds involving amine hydrogen and phosphineoxide oxygen [N1···O5i 2.782 (6) Å; symmetry code (i): -x, -y, -z].

Experimental

N-(4-methoxybenzylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (2 mmol) and diethyl phosphite (5 mmol) were mixed in a 25 ml flask (without any solvent),and kept in the oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtered. Pure compound (I) was obtained by recrystallization from ethanol(20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were positioned geometrically, with N—H=0.86 Å and C—H=0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H)=xUeq(C, N), where x=1.5 for methyl H atoms and x=1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radius.

Crystal data

C20H23N4O6PS F(000) = 1000
Mr = 478.45 Dx = 1.338 Mg m3
Monoclinic, P21/n Melting point: 476 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 11.481 (2) Å Cell parameters from 25 reflections
b = 19.426 (4) Å θ = 9–13°
c = 11.960 (2) Å µ = 0.25 mm1
β = 117.08 (3)° T = 298 K
V = 2375.0 (10) Å3 Block, light yellow
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 2330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.064
graphite θmax = 25.2°, θmin = 2.0°
ω/2θ scans h = −13→12
Absorption correction: ψ scan (North et al., 1968) k = 0→23
Tmin = 0.930, Tmax = 0.976 l = 0→14
4497 measured reflections 3 standard reflections every 200 reflections
4276 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.03P)2 + 3.2P] where P = (Fo2 + 2Fc2)/3
4276 reflections (Δ/σ)max < 0.001
289 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.11752 (9) 0.17107 (5) −0.10907 (11) 0.0688 (4)
P 0.23008 (11) −0.02508 (6) 0.20206 (12) 0.0738 (4)
N1 0.1765 (3) 0.04373 (17) −0.0120 (3) 0.0700 (10)
H1A 0.0966 0.0342 −0.0631 0.084*
O1 0.2443 (4) −0.2713 (2) −0.1562 (4) 0.1097 (12)
C1 0.1296 (7) −0.2920 (3) −0.2318 (6) 0.113 (2)
H1B 0.1350 −0.3368 −0.2631 0.185*
H1C 0.0906 −0.2603 −0.3007 0.185*
H1D 0.0769 −0.2945 −0.1885 0.185*
N2 0.3560 (3) 0.19583 (16) 0.0431 (3) 0.0639 (9)
O2 0.3525 (4) 0.53251 (19) −0.1632 (4) 0.154 (2)
C2 0.2280 (7) −0.2053 (3) −0.1134 (7) 0.108 (2)
N3 0.3379 (3) 0.12947 (16) 0.0636 (3) 0.0699 (10)
O3 0.1531 (4) 0.52326 (17) −0.2953 (4) 0.1379 (17)
C3 0.1235 (6) −0.1701 (3) −0.1297 (6) 0.1072 (19)
H3B 0.0416 −0.1890 −0.1795 0.129*
N4 0.2539 (5) 0.4987 (2) −0.2075 (4) 0.0979 (14)
C4 0.1299 (4) −0.1052 (2) −0.0755 (5) 0.0913 (16)
H4A 0.0530 −0.0821 −0.0911 0.110*
O4 0.2896 (4) 0.04106 (19) 0.2851 (4) 0.1017 (13)
O5 0.0918 (3) −0.03805 (17) 0.1673 (3) 0.0877 (10)
C5 0.2466 (4) −0.0758 (2) −0.0010 (4) 0.0624 (11)
O6 0.3218 (3) −0.0846 (2) 0.2736 (3) 0.1005 (12)
C6 0.3601 (5) −0.1129 (3) 0.0189 (5) 0.0917 (16)
H6A 0.4426 −0.0944 0.0683 0.110*
C7 0.3476 (6) −0.1768 (3) −0.0357 (6) 0.0997 (17)
H7A 0.4229 −0.2017 −0.0194 0.120*
C8 0.2618 (4) −0.0111 (2) 0.0683 (4) 0.0660 (12)
H8A 0.3527 0.0042 0.1000 0.079*
C9 0.2198 (3) 0.1078 (2) −0.0078 (4) 0.0581 (10)
C10 0.2513 (3) 0.22694 (18) −0.0425 (4) 0.0560 (10)
C11 0.2495 (3) 0.29723 (19) −0.0822 (3) 0.0553 (10)
C12 0.1363 (3) 0.32734 (19) −0.1726 (4) 0.0656 (12)
H12A 0.0584 0.3026 −0.2044 0.079*
C13 0.1361 (4) 0.3941 (2) −0.2172 (4) 0.0795 (14)
H13A 0.0599 0.4130 −0.2800 0.095*
C14 0.2518 (4) 0.4315 (2) −0.1658 (4) 0.0774 (13)
C15 0.3662 (4) 0.4028 (2) −0.0697 (4) 0.0732 (13)
H15A 0.4426 0.4287 −0.0333 0.088*
C16 0.3654 (3) 0.3367 (2) −0.0296 (4) 0.0698 (12)
H16A 0.4417 0.3177 0.0328 0.084*
C17 0.2907 (7) 0.1293 (4) 0.4169 (7) 0.118 (3)
H17A 0.2690 0.1414 0.4830 0.177*
H17B 0.2346 0.1539 0.3418 0.177*
H17C 0.3802 0.1413 0.4413 0.177*
C18 0.2731 (7) 0.0561 (3) 0.3935 (7) 0.124 (2)
H18A 0.3368 0.0309 0.4653 0.151*
H18B 0.1863 0.0425 0.3798 0.151*
C19 0.2659 (6) −0.2016 (3) 0.2448 (6) 0.121 (2)
H19A 0.2385 −0.2397 0.2783 0.182*
H19B 0.3481 −0.2123 0.2461 0.182*
H19C 0.2014 −0.1930 0.1600 0.182*
C20 0.2802 (6) −0.1418 (3) 0.3193 (6) 0.1095 (18)
H20A 0.1973 −0.1313 0.3184 0.131*
H20B 0.3437 −0.1510 0.4055 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0357 (5) 0.0488 (6) 0.0856 (8) −0.0028 (5) −0.0039 (5) 0.0022 (6)
P 0.0516 (7) 0.0748 (8) 0.0725 (8) 0.0008 (6) 0.0087 (6) −0.0038 (7)
N1 0.0389 (18) 0.057 (2) 0.085 (2) −0.0010 (16) 0.0027 (17) 0.0111 (18)
O1 0.118 (3) 0.102 (3) 0.107 (3) 0.011 (3) 0.094 (3) −0.013 (2)
C1 0.119 (5) 0.123 (6) 0.110 (5) 0.008 (5) 0.068 (5) 0.014 (4)
N2 0.0360 (17) 0.051 (2) 0.073 (2) −0.0047 (15) −0.0024 (15) 0.0008 (17)
O2 0.135 (4) 0.066 (2) 0.163 (4) −0.040 (2) −0.018 (3) 0.012 (2)
C2 0.137 (6) 0.048 (3) 0.168 (6) −0.007 (3) 0.095 (5) −0.018 (3)
N3 0.0392 (18) 0.050 (2) 0.087 (2) 0.0054 (15) −0.0002 (17) 0.0068 (18)
O3 0.130 (3) 0.059 (2) 0.148 (4) 0.018 (2) −0.003 (3) 0.015 (2)
C3 0.100 (4) 0.073 (4) 0.150 (5) −0.031 (3) 0.058 (4) −0.039 (4)
N4 0.091 (3) 0.057 (3) 0.096 (3) −0.002 (2) 0.001 (3) 0.001 (2)
C4 0.066 (3) 0.058 (3) 0.124 (4) −0.014 (2) 0.020 (3) −0.015 (3)
O4 0.117 (3) 0.097 (3) 0.113 (3) −0.037 (2) 0.036 (3) −0.049 (2)
O5 0.0603 (19) 0.104 (2) 0.091 (2) 0.0058 (17) 0.0280 (17) 0.0085 (19)
C5 0.055 (2) 0.050 (2) 0.082 (3) −0.001 (2) 0.031 (2) 0.000 (2)
O6 0.068 (2) 0.101 (3) 0.104 (3) 0.019 (2) 0.0099 (19) 0.043 (2)
C6 0.073 (3) 0.080 (4) 0.136 (5) 0.002 (3) 0.060 (3) −0.008 (3)
C7 0.116 (5) 0.062 (3) 0.151 (5) 0.024 (3) 0.086 (4) 0.017 (3)
C8 0.036 (2) 0.057 (3) 0.096 (3) 0.0057 (18) 0.023 (2) 0.006 (2)
C9 0.032 (2) 0.051 (2) 0.072 (3) 0.0090 (17) 0.0069 (18) 0.006 (2)
C10 0.0327 (19) 0.042 (2) 0.072 (3) −0.0039 (16) 0.0058 (18) −0.0128 (19)
C11 0.040 (2) 0.052 (2) 0.055 (2) 0.0013 (17) 0.0056 (17) −0.0093 (19)
C12 0.041 (2) 0.041 (2) 0.076 (3) −0.0024 (17) −0.0062 (19) 0.001 (2)
C13 0.055 (3) 0.046 (2) 0.089 (3) −0.002 (2) −0.009 (2) 0.012 (2)
C14 0.063 (3) 0.052 (3) 0.084 (3) 0.000 (2) 0.006 (2) −0.002 (2)
C15 0.046 (2) 0.065 (3) 0.085 (3) −0.009 (2) 0.009 (2) 0.003 (2)
C16 0.039 (2) 0.051 (2) 0.080 (3) 0.0010 (18) −0.0073 (19) 0.004 (2)
C17 0.129 (7) 0.116 (7) 0.109 (6) 0.002 (6) −0.037 (5) −0.029 (6)
C18 0.136 (6) 0.108 (5) 0.127 (6) −0.003 (4) 0.071 (5) −0.018 (4)
C19 0.124 (5) 0.111 (5) 0.133 (5) −0.007 (4) 0.063 (4) −0.004 (4)
C20 0.106 (4) 0.113 (5) 0.110 (5) 0.010 (4) 0.050 (4) 0.025 (4)

Geometric parameters (Å, °)

S—C10 1.749 (3) O6—C20 1.415 (6)
S—C9 1.750 (4) C6—C7 1.381 (7)
P—O5 1.468 (3) C6—H6A 0.9300
P—O6 1.535 (3) C7—H7A 0.9300
P—O4 1.577 (3) C8—H8A 0.9800
P—C8 1.816 (5) C10—C11 1.442 (5)
N1—C9 1.332 (5) C11—C12 1.386 (5)
N1—C8 1.469 (5) C11—C16 1.411 (5)
N1—H1A 0.8600 C12—C13 1.402 (5)
O1—C1 1.276 (6) C12—H12A 0.9300
O1—C2 1.423 (6) C13—C14 1.387 (5)
C1—H1B 0.9600 C13—H13A 0.9300
C1—H1C 0.9600 C14—C15 1.408 (5)
C1—H1D 0.9600 C15—C16 1.373 (5)
N2—C10 1.318 (4) C15—H15A 0.9300
N2—N3 1.346 (4) C16—H16A 0.9300
O2—N4 1.203 (5) C17—C18 1.446 (8)
C2—C3 1.316 (7) C17—H17A 0.9600
C2—C7 1.376 (7) C17—H17B 0.9600
N3—C9 1.301 (4) C17—H17C 0.9600
O3—N4 1.251 (5) C18—H18A 0.9700
C3—C4 1.404 (6) C18—H18B 0.9700
C3—H3B 0.9300 C19—C20 1.426 (7)
N4—C14 1.402 (6) C19—H19A 0.9600
C4—C5 1.352 (5) C19—H19B 0.9600
C4—H4A 0.9300 C19—H19C 0.9600
O4—C18 1.423 (7) C20—H20A 0.9700
C5—C6 1.412 (6) C20—H20B 0.9700
C5—C8 1.471 (5)
C10—S—C9 87.00 (18) N3—C9—N1 125.9 (3)
O5—P—O6 114.1 (2) N3—C9—S 113.4 (3)
O5—P—O4 114.9 (2) N1—C9—S 120.6 (3)
O6—P—O4 105.8 (2) N2—C10—C11 124.1 (3)
O5—P—C8 113.63 (19) N2—C10—S 111.7 (3)
O6—P—C8 104.0 (2) C11—C10—S 124.0 (3)
O4—P—C8 103.3 (2) C12—C11—C16 118.6 (4)
C9—N1—C8 121.8 (3) C12—C11—C10 121.6 (3)
C9—N1—H1A 119.1 C16—C11—C10 119.8 (3)
C8—N1—H1A 119.1 C11—C12—C13 121.7 (4)
C1—O1—C2 106.1 (5) C11—C12—H12A 119.1
O1—C1—H1B 109.5 C13—C12—H12A 119.1
O1—C1—H1C 109.5 C14—C13—C12 118.6 (4)
H1B—C1—H1C 109.5 C14—C13—H13A 120.7
O1—C1—H1D 109.5 C12—C13—H13A 120.7
H1B—C1—H1D 109.5 C13—C14—N4 119.8 (4)
H1C—C1—H1D 109.5 C13—C14—C15 120.3 (4)
C10—N2—N3 114.8 (3) N4—C14—C15 119.8 (4)
C3—C2—C7 116.9 (5) C16—C15—C14 120.2 (4)
C3—C2—O1 132.5 (6) C16—C15—H15A 119.9
C7—C2—O1 110.5 (6) C14—C15—H15A 119.9
C9—N3—N2 113.1 (3) C15—C16—C11 120.5 (3)
C2—C3—C4 123.1 (5) C15—C16—H16A 119.8
C2—C3—H3B 118.5 C11—C16—H16A 119.8
C4—C3—H3B 118.5 C18—C17—H17A 109.5
O2—N4—O3 119.1 (4) C18—C17—H17B 109.5
O2—N4—C14 121.2 (4) H17A—C17—H17B 109.5
O3—N4—C14 119.7 (4) C18—C17—H17C 109.5
C5—C4—C3 120.8 (5) H17A—C17—H17C 109.5
C5—C4—H4A 119.6 H17B—C17—H17C 109.5
C3—C4—H4A 119.6 O4—C18—C17 108.2 (6)
C18—O4—P 122.8 (4) O4—C18—H18A 110.1
C4—C5—C6 117.2 (4) C17—C18—H18A 110.1
C4—C5—C8 124.1 (4) O4—C18—H18B 110.1
C6—C5—C8 118.5 (4) C17—C18—H18B 110.1
C20—O6—P 122.7 (3) H18A—C18—H18B 108.4
C7—C6—C5 119.4 (5) C20—C19—H19A 109.5
C7—C6—H6A 120.3 C20—C19—H19B 109.5
C5—C6—H6A 120.3 H19A—C19—H19B 109.5
C2—C7—C6 122.5 (5) C20—C19—H19C 109.5
C2—C7—H7A 118.7 H19A—C19—H19C 109.5
C6—C7—H7A 118.7 H19B—C19—H19C 109.5
N1—C8—C5 112.2 (3) O6—C20—C19 111.2 (5)
N1—C8—P 110.0 (3) O6—C20—H20A 109.4
C5—C8—P 110.4 (3) C19—C20—H20A 109.4
N1—C8—H8A 108.0 O6—C20—H20B 109.4
C5—C8—H8A 108.0 C19—C20—H20B 109.4
P—C8—H8A 108.0 H20A—C20—H20B 108.0
C1—O1—C2—C3 6.7 (9) N2—N3—C9—N1 176.5 (4)
C1—O1—C2—C7 −176.9 (5) N2—N3—C9—S −0.5 (5)
C10—N2—N3—C9 1.4 (5) C8—N1—C9—N3 0.6 (7)
C7—C2—C3—C4 2.2 (10) C8—N1—C9—S 177.5 (3)
O1—C2—C3—C4 178.5 (6) C10—S—C9—N3 −0.3 (3)
C2—C3—C4—C5 −0.9 (9) C10—S—C9—N1 −177.5 (4)
O5—P—O4—C18 48.1 (5) N3—N2—C10—C11 −177.9 (4)
O6—P—O4—C18 −78.7 (5) N3—N2—C10—S −1.6 (5)
C8—P—O4—C18 172.4 (5) C9—S—C10—N2 1.0 (3)
C3—C4—C5—C6 0.3 (8) C9—S—C10—C11 177.4 (4)
C3—C4—C5—C8 −174.3 (5) N2—C10—C11—C12 −179.8 (4)
O5—P—O6—C20 −9.6 (5) S—C10—C11—C12 4.3 (6)
O4—P—O6—C20 117.7 (5) N2—C10—C11—C16 0.9 (6)
C8—P—O6—C20 −133.9 (4) S—C10—C11—C16 −175.0 (3)
C4—C5—C6—C7 −1.1 (7) C16—C11—C12—C13 3.5 (6)
C8—C5—C6—C7 173.8 (5) C10—C11—C12—C13 −175.8 (4)
C3—C2—C7—C6 −3.0 (9) C11—C12—C13—C14 −2.3 (7)
O1—C2—C7—C6 179.9 (5) C12—C13—C14—N4 −179.2 (4)
C5—C6—C7—C2 2.5 (9) C12—C13—C14—C15 −0.8 (7)
C9—N1—C8—C5 −136.1 (4) O2—N4—C14—C13 178.9 (5)
C9—N1—C8—P 100.6 (4) O3—N4—C14—C13 −3.6 (8)
C4—C5—C8—N1 −49.1 (6) O2—N4—C14—C15 0.5 (8)
C6—C5—C8—N1 136.4 (4) O3—N4—C14—C15 177.9 (5)
C4—C5—C8—P 74.1 (5) C13—C14—C15—C16 2.5 (7)
C6—C5—C8—P −100.5 (4) N4—C14—C15—C16 −179.1 (5)
O5—P—C8—N1 53.6 (3) C14—C15—C16—C11 −1.2 (7)
O6—P—C8—N1 178.1 (3) C12—C11—C16—C15 −1.7 (7)
O4—P—C8—N1 −71.6 (3) C10—C11—C16—C15 177.6 (4)
O5—P—C8—C5 −70.8 (3) P—O4—C18—C17 −157.3 (5)
O6—P—C8—C5 53.7 (3) P—O6—C20—C19 105.9 (5)
O4—P—C8—C5 164.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O5i 0.86 1.94 2.782 (6) 165

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2071).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pesticide Sci.21, 195–201.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017364/ya2071sup1.cif

e-64-o1376-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017364/ya2071Isup2.hkl

e-64-o1376-Isup2.hkl (209.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES