Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1377. doi: 10.1107/S1600536808019557

4-Iodo-3,3′-dimethoxy­biphen­yl

Qamar Ali a, Zahid Hussain a, Muhammad Raza Shah a,*, Donald VanDerveer b
PMCID: PMC2962011  PMID: 21203098

Abstract

Mol­ecules of the title compound, C14H13IO2, exhibit no π–π inter­actions. The dihedral angle between the two aromatic rings is 43.72 (9)°. The shortest inter­molecular I⋯O distance is 3.408 (2) Å, which is significantly less than the sum of the van der Waals radii for I and O (3.50 Å).

Related literature

For related literature, see: Litvinchuk et al. (2004); Baudry et al. (2006); Sisson et al. (2006); Ali et al. (2008); Ibad et al. (2008); Baumeister et al. (2001).graphic file with name e-64-o1377-scheme1.jpg

Experimental

Crystal data

  • C14H13IO2

  • M r = 340.14

  • Monoclinic, Inline graphic

  • a = 11.932 (2) Å

  • b = 15.382 (3) Å

  • c = 6.9940 (14) Å

  • β = 90.68 (3)°

  • V = 1283.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 153 (2) K

  • 0.43 × 0.38 × 0.36 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998) T min = 0.415, T max = 0.469 (expected range = 0.362–0.409)

  • 9179 measured reflections

  • 2337 independent reflections

  • 2206 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.053

  • S = 1.09

  • 2337 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019557/bt2736sup1.cif

e-64-o1377-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019557/bt2736Isup2.hkl

e-64-o1377-Isup2.hkl (114.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Higher Education Commission of Pakistan for financial support.

supplementary crystallographic information

Comment

Self-assembling molecules based on oligo(p-phenylene)s are receiving increased attention as building blocks for supramolecular structures, such as artficial ion channels (Litvinchuk et al., 2004; Baudry et al.,2 006). One can envision that incorporation of a conjugated macrocycle such as porphyrin into an oligo(p-phenylene)s, extends the cylindrical supramolecular organization capabilities of the oligo(pphenylene)s (Sisson et al., 2006) and can result in functionalized pores. The titled compound can be used as a precursor for the synthesis of oligo(p-phenylene)s (Baumeister et al., 2001). The I1—O1 intermolecular distance is 3.408 (2) Å which is significantly less than 3.50 Å, the sum of the van der Waals radii for I and O. Reported data (Ali et al., 2008) indicate that the oxygen atom of a methoxy group polarizes the electronic cloud surrounding the iodide causing a reduction in the I—O intermolecular distance. The phenyl rings are twisted by a dihedral angle of 43.72 (9)°, which is typical for biphenyl molecules (Ibad et al., 2008). The presence of a iodo group at only one phenyl ring least to a twist between the two rings, whereas the rings are coplanar when both phenyl rings bore a iodo group (Ali et al., 2008). The crystal packing diagram (Fig.2) shows that the molecules are interlinked by I—O interactions.

Experimental

5 g (10.7 mmol) of 4,4`-diiodo-3`-methoxy[1,1`-biphenyl]-3-yl-methyl ether was dissolved in 30 ml of THF in a 250 ml round bottom flask. The reaction mixture was stirred until a clear solution formed. Then a tert-butyl lithium solution (8.2 ml, 1.7 M in pentane 13.9 mmol) was added at 0 C. The reaction was monitored after an interval of 5 minutes through TLC.The reaction was stirred for thirty five minutes until a spot of 4-iodo-3,3`-dimethoxy-1,1`-biphenyl appeared on the TLC and was then quenched with 10 ml (1 N HCl) and extracted with 30 ml of chloroform three times. The crude reaction mixture was concentrated using a rotary evaporator. A super saturated solution of crude reaction mixture was prepared in chlorofrom and then methanol was added to this super-saturated solution of reaction mixture, two layers were formed which were separated and analysed by TLC (Hexane:Chloroform 1:1). The methanol layer contained 4-iodo-3,3'-dimethoxybiphenyl as the major product. The slow evaporation of methanol at room temperature yielded colorless crystals.

Refinement

All H atoms were geometrically positioned and allowed to ride on the corresponding parent atom with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(Cmethyl) or 1.2Ueq(Caromatic), respectively. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

A perspective thermal elipsoid drawing (50% probability) of the molecule showing the atom labelling scheme.

Fig. 2.

Fig. 2.

A packing diagram along the a axis showing the short I - O contacts with dashed lines.

Crystal data

C14H13IO2 F000 = 664
Mr = 340.14 Dx = 1.760 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 11.932 (2) Å Cell parameters from 4368 reflections
b = 15.382 (3) Å θ = 2.9–26.4º
c = 6.9940 (14) Å µ = 2.48 mm1
β = 90.68 (3)º T = 153 (2) K
V = 1283.6 (4) Å3 Chip, colorless
Z = 4 0.43 × 0.38 × 0.36 mm

Data collection

Rigaku Mercury CCD diffractometer 2337 independent reflections
Radiation source: Sealed Tube 2206 reflections with I > 2σ(I)
Monochromator: Graphite Monochromator Rint = 0.021
Detector resolution: 14.6306 pixels mm-1 θmax = 25.4º
T = 153(2) K θmin = 3.2º
ω scans h = −14→14
Absorption correction: multi-scan(Jacobson, 1998) k = −18→18
Tmin = 0.415, Tmax = 0.469 l = −8→6
9179 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H-atom parameters constrained
wR(F2) = 0.054   w = 1/[σ2(Fo2) + (0.0234P)2 + 1.6489P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
2337 reflections Δρmax = 1.19 e Å3
156 parameters Δρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.351251 (14) 0.680339 (10) 0.13178 (2) 0.02636 (8)
C1 0.3045 (2) 0.59482 (15) 0.3506 (3) 0.0207 (5)
C2 0.37606 (19) 0.58357 (15) 0.5087 (3) 0.0187 (5)
C3 0.34448 (17) 0.52906 (15) 0.6519 (3) 0.0158 (4)
H3A 0.3926 0.5222 0.7618 0.019*
C4 0.2424 (2) 0.48233 (15) 0.6425 (3) 0.0203 (5)
C5 0.1732 (2) 0.49371 (17) 0.4818 (4) 0.0251 (5)
H5A 0.1037 0.4625 0.4718 0.030*
C6 0.2044 (2) 0.55002 (17) 0.3361 (4) 0.0250 (5)
H6A 0.1566 0.5577 0.2261 0.030*
C7 0.2107 (2) 0.42139 (15) 0.7984 (3) 0.0203 (5)
C8 0.2903 (2) 0.36430 (16) 0.8774 (3) 0.0219 (5)
H8A 0.3663 0.3652 0.8341 0.026*
C9 0.2583 (2) 0.30671 (16) 1.0183 (4) 0.0233 (5)
H9A 0.3129 0.2672 1.0707 0.028*
C10 0.1492 (2) 0.30429 (16) 1.0864 (4) 0.0235 (5)
H10A 0.1285 0.2638 1.1844 0.028*
C11 0.0710 (2) 0.36164 (16) 1.0095 (4) 0.0226 (5)
C12 0.1018 (2) 0.41935 (16) 0.8648 (4) 0.0222 (5)
H12A 0.0468 0.4580 0.8107 0.027*
C13 0.5475 (2) 0.62115 (17) 0.6703 (4) 0.0259 (5)
H13A 0.6153 0.6529 0.6478 0.039*
H13B 0.5651 0.5611 0.6924 0.039*
H13C 0.5108 0.6446 0.7803 0.039*
C14 −0.0733 (3) 0.31310 (18) 1.2189 (4) 0.0340 (7)
H14A −0.1489 0.3273 1.2525 0.051*
H14B −0.0248 0.3222 1.3275 0.051*
H14C −0.0696 0.2533 1.1802 0.051*
O1 0.47461 (14) 0.62845 (11) 0.5063 (2) 0.0238 (4)
O2 −0.03855 (15) 0.36749 (13) 1.0649 (3) 0.0334 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02789 (11) 0.02800 (11) 0.02336 (11) 0.00115 (6) 0.00705 (7) 0.00536 (6)
C1 0.0225 (12) 0.0197 (11) 0.0200 (12) −0.0003 (9) 0.0043 (9) 0.0001 (9)
C2 0.0185 (11) 0.0174 (11) 0.0205 (11) −0.0006 (9) 0.0036 (9) −0.0022 (9)
C3 0.0133 (10) 0.0184 (11) 0.0156 (11) 0.0032 (8) −0.0027 (8) −0.0051 (8)
C4 0.0206 (11) 0.0204 (11) 0.0200 (12) −0.0002 (9) 0.0016 (9) −0.0006 (9)
C5 0.0201 (12) 0.0284 (13) 0.0267 (13) −0.0055 (10) −0.0031 (10) 0.0035 (10)
C6 0.0220 (12) 0.0302 (13) 0.0226 (12) −0.0008 (10) −0.0047 (10) 0.0019 (10)
C7 0.0224 (11) 0.0176 (11) 0.0209 (12) −0.0035 (9) −0.0037 (9) −0.0022 (9)
C8 0.0206 (12) 0.0229 (12) 0.0222 (12) −0.0008 (9) −0.0026 (9) −0.0011 (10)
C9 0.0248 (13) 0.0243 (12) 0.0208 (12) 0.0030 (10) −0.0053 (10) −0.0015 (10)
C10 0.0290 (13) 0.0228 (12) 0.0188 (12) −0.0031 (10) −0.0017 (10) 0.0026 (10)
C11 0.0213 (12) 0.0226 (12) 0.0239 (12) −0.0018 (9) 0.0008 (10) 0.0013 (10)
C12 0.0211 (12) 0.0197 (11) 0.0259 (13) 0.0017 (9) −0.0010 (9) 0.0030 (10)
C13 0.0215 (12) 0.0306 (13) 0.0257 (13) −0.0047 (10) 0.0006 (10) −0.0071 (11)
C14 0.0318 (15) 0.0372 (16) 0.0331 (16) −0.0057 (11) 0.0109 (12) 0.0092 (12)
O1 0.0195 (8) 0.0284 (9) 0.0236 (9) −0.0066 (7) 0.0013 (7) −0.0004 (7)
O2 0.0239 (9) 0.0370 (11) 0.0396 (11) 0.0024 (8) 0.0080 (8) 0.0157 (9)

Geometric parameters (Å, °)

I1—C1 2.098 (2) C9—C10 1.393 (4)
C1—C6 1.382 (3) C9—H9A 0.9600
C1—C2 1.400 (3) C10—C11 1.388 (4)
C2—C3 1.363 (3) C10—H10A 0.9600
C2—O1 1.364 (3) C11—O2 1.370 (3)
C3—C4 1.416 (3) C11—C12 1.399 (3)
C3—H3A 0.9600 C12—H12A 0.9600
C4—C5 1.397 (3) C13—O1 1.436 (3)
C4—C7 1.490 (3) C13—H13A 0.9599
C5—C6 1.391 (4) C13—H13B 0.9599
C5—H5A 0.9600 C13—H13C 0.9599
C6—H6A 0.9600 C14—O2 1.429 (3)
C7—C12 1.386 (3) C14—H14A 0.9599
C7—C8 1.402 (3) C14—H14B 0.9599
C8—C9 1.382 (4) C14—H14C 0.9599
C8—H8A 0.9600
I1···O1i 3.408 (2)
C6—C1—C2 121.0 (2) C8—C9—H9A 119.1
C6—C1—I1 119.76 (18) C10—C9—H9A 119.1
C2—C1—I1 119.25 (17) C11—C10—C9 118.5 (2)
C3—C2—O1 124.5 (2) C11—C10—H10A 120.7
C3—C2—C1 119.0 (2) C9—C10—H10A 120.7
O1—C2—C1 116.5 (2) O2—C11—C10 124.8 (2)
C2—C3—C4 121.6 (2) O2—C11—C12 115.0 (2)
C2—C3—H3A 119.2 C10—C11—C12 120.1 (2)
C4—C3—H3A 119.2 C7—C12—C11 120.8 (2)
C5—C4—C3 118.3 (2) C7—C12—H12A 119.6
C5—C4—C7 121.0 (2) C11—C12—H12A 119.6
C3—C4—C7 120.7 (2) O1—C13—H13A 109.5
C6—C5—C4 120.4 (2) O1—C13—H13B 109.5
C6—C5—H5A 119.8 H13A—C13—H13B 109.5
C4—C5—H5A 119.8 O1—C13—H13C 109.5
C1—C6—C5 119.7 (2) H13A—C13—H13C 109.5
C1—C6—H6A 120.1 H13B—C13—H13C 109.5
C5—C6—H6A 120.1 O2—C14—H14A 109.5
C12—C7—C8 119.1 (2) O2—C14—H14B 109.5
C12—C7—C4 120.4 (2) H14A—C14—H14B 109.5
C8—C7—C4 120.4 (2) O2—C14—H14C 109.5
C9—C8—C7 119.4 (2) H14A—C14—H14C 109.5
C9—C8—H8A 120.3 H14B—C14—H14C 109.5
C7—C8—H8A 120.3 C2—O1—C13 117.71 (19)
C8—C9—C10 121.9 (2) C11—O2—C14 117.4 (2)
C6—C1—C2—C3 −1.6 (4) C3—C4—C7—C8 −43.5 (3)
I1—C1—C2—C3 178.93 (16) C12—C7—C8—C9 0.6 (4)
C6—C1—C2—O1 177.8 (2) C4—C7—C8—C9 −178.3 (2)
I1—C1—C2—O1 −1.7 (3) C7—C8—C9—C10 −0.8 (4)
O1—C2—C3—C4 −178.0 (2) C8—C9—C10—C11 0.0 (4)
C1—C2—C3—C4 1.3 (3) C9—C10—C11—O2 −178.8 (2)
C2—C3—C4—C5 −0.4 (3) C9—C10—C11—C12 1.0 (4)
C2—C3—C4—C7 178.5 (2) C8—C7—C12—C11 0.4 (4)
C3—C4—C5—C6 −0.4 (4) C4—C7—C12—C11 179.2 (2)
C7—C4—C5—C6 −179.2 (2) O2—C11—C12—C7 178.7 (2)
C2—C1—C6—C5 0.9 (4) C10—C11—C12—C7 −1.2 (4)
I1—C1—C6—C5 −179.64 (19) C3—C2—O1—C13 −3.3 (3)
C4—C5—C6—C1 0.1 (4) C1—C2—O1—C13 177.3 (2)
C5—C4—C7—C12 −43.6 (3) C10—C11—O2—C14 2.9 (4)
C3—C4—C7—C12 137.6 (2) C12—C11—O2—C14 −176.9 (2)
C5—C4—C7—C8 135.3 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2736).

References

  1. Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910. [DOI] [PMC free article] [PubMed]
  2. Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Func. Mater. 16, 169–179.
  3. Baumeister, B., Sakai, N. & Matile, S. (2001). Org. Lett.3, 4229–4232. [DOI] [PubMed]
  4. Ibad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130–o1131. [DOI] [PMC free article] [PubMed]
  5. Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  6. Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc.126, 10067–10075. [DOI] [PubMed]
  7. Molecular Structure Corporation & Rigaku (2006). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev.35, 1269–1286. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019557/bt2736sup1.cif

e-64-o1377-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019557/bt2736Isup2.hkl

e-64-o1377-Isup2.hkl (114.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES