Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1379–o1380. doi: 10.1107/S1600536808019181

Cytenamide–formic acid (1/1)

Andrea Johnston a, Alastair J Florence a,*, Gary J Miller a, Alan R Kennedy b, Colin T Bedford c
PMCID: PMC2962013  PMID: 21203100

Abstract

In the crystal structure of the title compound [systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide–meth­anoic acid (1/1)], C16H13NO·CH2O2, the cytenamide and solvent mol­ecules form a hydrogen-bonded R 2 2(8) dimer motif, which is further connected to form a centrosymmetric double-motif arrangement. The asymmetric unit contains two formula units.

Related literature

For details on experimental methods used to obtain this form, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For related literature on cytenamide, see: Florence, Bedford et al. (2008). For cyten­amide analogues, see: Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2007); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2006); Florence, Shankland et al. (2008). For graph-set motifs, see: Etter (1990).graphic file with name e-64-o1379-scheme1.jpg

Experimental

Crystal data

  • C16H13NO·CH2O2

  • M r = 281.3

  • Monoclinic, Inline graphic

  • a = 11.5351 (13) Å

  • b = 13.9095 (15) Å

  • c = 17.6904 (19) Å

  • β = 95.846 (5)°

  • V = 2823.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 (2) K

  • 0.25 × 0.15 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.978, T max = 0.996

  • 55762 measured reflections

  • 12996 independent reflections

  • 9356 reflections with I > 2/s(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.142

  • S = 1.02

  • 12996 reflections

  • 411 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019181/rn2044sup1.cif

e-64-o1379-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019181/rn2044Isup2.hkl

e-64-o1379-Isup2.hkl (622.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.884 (15) 2.035 (15) 2.9096 (12) 170.2 (13)
O3—H1O⋯O1 0.927 (18) 1.679 (19) 2.5971 (12) 169.9 (18)
O6—H2O⋯O2 0.91 (2) 1.66 (2) 2.5517 (12) 168.3 (19)
N2—H3N⋯O5 0.895 (15) 2.103 (15) 2.9645 (12) 161.2 (14)
N2—H4N⋯O4 0.843 (16) 2.237 (15) 2.9129 (12) 137.3 (13)
N1—H2N⋯O5 0.866 (16) 2.151 (16) 2.9088 (12) 145.9 (13)

Acknowledgments

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk) and AstraZeneca for funding GJM.

supplementary crystallographic information

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-formic acid solvate was produced during an automated parallel crystallization study (Florence et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2007) and its closely related analogues: CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (DHC) (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2006) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The molecules crystallize in the space group P21/c with two CYT and two solvent molecules in the asymmetric unit. Both CYT molecules form an R22(8) (Etter, 1990) dimer motif with adjacent solvent molecules via contacts 1 - 4 (Table 1). In addition, two N—H···O contacts (5 and 6) join adjacent dimers to form a R42(8) centrosymmetric double motif (Fig. 2).

This packing arrangement is similar to that in CBZ-formic acid solvate which, in contrast, crystallizes with Z' = 1 in the monoclinic space group P21/c (Fig. 2). The main difference being a doubling of the a axis in CYT-formic acid solvate (Z' = 2) (Fleischman et al., 2003)

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of the title compound was recrystallized from a saturated formic acid solution by isothermal solvent evaporation at 278 oK.

Figures

Fig. 1.

Fig. 1.

The molecular structure and atomic labelling of CYT formic acid, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing in CYT-formic acid (top) and CBZ-formic acid (bottom), viewed down the a-axis. Molecules are coloured according to symmetry equivalence.

Crystal data

C16H13NO·CH2O2 F000 = 1184
Mr = 281.3 Dx = 1.323 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9893 reflections
a = 11.5351 (13) Å θ = 2.5–35.6º
b = 13.9095 (15) Å µ = 0.09 mm1
c = 17.6904 (19) Å T = 123 (2) K
β = 95.846 (5)º Block, colourless
V = 2823.6 (5) Å3 0.25 × 0.15 × 0.05 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 12996 independent reflections
Radiation source: fine-focus sealed tube 9356 reflections with I > 2/s(I)
Monochromator: graphite Rint = 0.025
T = 123(2) K θmax = 35.7º
φ and ω scans θmin = 2.3º
Absorption correction: Multi-scan(SADABS; Sheldrick, 2002) h = −18→18
Tmin = 0.978, Tmax = 0.996 k = −18→22
55762 measured reflections l = −28→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142   w = 1/[σ2(Fo2) + (0.0728P)2 + 0.6562P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
12996 reflections Δρmax = 0.58 e Å3
411 parameters Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.36614 (7) 0.30926 (5) 0.65575 (4) 0.02658 (15)
O2 0.10330 (7) 0.67015 (5) 0.37463 (4) 0.02342 (14)
O3 0.19631 (8) 0.37994 (6) 0.72402 (4) 0.02951 (16)
O4 0.14455 (7) 0.47636 (6) 0.62510 (4) 0.02896 (16)
O5 0.30232 (7) 0.49021 (6) 0.40062 (4) 0.03007 (17)
O6 0.23678 (8) 0.57335 (6) 0.29680 (4) 0.03242 (18)
N1 0.33490 (8) 0.39736 (6) 0.54859 (5) 0.02341 (16)
N2 0.11769 (8) 0.58059 (5) 0.48157 (5) 0.02066 (15)
C1 0.50028 (8) 0.29386 (6) 0.47664 (5) 0.01748 (14)
C2 0.57461 (8) 0.35519 (7) 0.44219 (5) 0.02202 (17)
H2 0.6303 0.3921 0.4731 0.026*
C3 0.56919 (9) 0.36362 (8) 0.36373 (6) 0.02555 (19)
H3 0.6216 0.4050 0.3413 0.031*
C4 0.48681 (10) 0.31127 (7) 0.31820 (6) 0.02523 (19)
H4 0.4826 0.3166 0.2645 0.030*
C5 0.41066 (9) 0.25107 (7) 0.35153 (5) 0.02272 (17)
H5 0.3528 0.2170 0.3201 0.027*
C6 0.41737 (8) 0.23938 (6) 0.43097 (5) 0.01853 (15)
C7 0.33783 (8) 0.17138 (6) 0.46164 (6) 0.02090 (16)
H7 0.2639 0.1641 0.4332 0.025*
C8 0.35587 (9) 0.11767 (6) 0.52507 (6) 0.02140 (16)
H8 0.2934 0.0769 0.5355 0.026*
C9 0.45948 (8) 0.11419 (6) 0.57986 (5) 0.02008 (16)
C10 0.48622 (11) 0.02677 (7) 0.61783 (6) 0.0281 (2)
H10 0.4344 −0.0261 0.6094 0.034*
C11 0.58653 (11) 0.01640 (7) 0.66714 (6) 0.0307 (2)
H11 0.6032 −0.0431 0.6923 0.037*
C12 0.66267 (10) 0.09340 (8) 0.67957 (6) 0.0282 (2)
H12 0.7329 0.0861 0.7120 0.034*
C13 0.63592 (9) 0.18121 (7) 0.64440 (5) 0.02332 (17)
H13 0.6877 0.2340 0.6537 0.028*
C14 0.53432 (8) 0.19277 (6) 0.59577 (5) 0.01848 (15)
C15 0.50395 (8) 0.29080 (6) 0.56232 (5) 0.01808 (15)
H15 0.5692 0.3343 0.5819 0.022*
C16 0.39403 (8) 0.33227 (6) 0.59203 (5) 0.01896 (15)
C17 −0.00637 (8) 0.82307 (6) 0.44107 (5) 0.01786 (15)
C18 −0.10409 (9) 0.85561 (7) 0.39547 (5) 0.02321 (17)
H18 −0.1708 0.8155 0.3872 0.028*
C19 −0.10533 (10) 0.94622 (8) 0.36176 (6) 0.0293 (2)
H19 −0.1734 0.9683 0.3321 0.035*
C20 −0.00710 (11) 1.00399 (7) 0.37167 (6) 0.0306 (2)
H20 −0.0070 1.0654 0.3481 0.037*
C21 0.09067 (10) 0.97183 (7) 0.41602 (6) 0.0263 (2)
H21 0.1585 1.0110 0.4216 0.032*
C22 0.09204 (8) 0.88216 (6) 0.45311 (5) 0.01954 (16)
C23 0.19633 (9) 0.85676 (7) 0.50299 (6) 0.02165 (16)
H23 0.2679 0.8812 0.4887 0.026*
C24 0.20378 (8) 0.80303 (6) 0.56672 (5) 0.02076 (16)
H24 0.2799 0.7946 0.5918 0.025*
C25 0.10967 (8) 0.75612 (6) 0.60205 (5) 0.01819 (15)
C26 0.12267 (9) 0.74452 (7) 0.68148 (5) 0.02342 (18)
H26 0.1936 0.7635 0.7095 0.028*
C27 0.03445 (11) 0.70599 (7) 0.71980 (5) 0.0276 (2)
H27 0.0446 0.6996 0.7735 0.033*
C28 −0.06874 (10) 0.67688 (8) 0.67918 (6) 0.02705 (19)
H28 −0.1303 0.6518 0.7051 0.032*
C29 −0.08193 (9) 0.68443 (7) 0.60040 (5) 0.02195 (17)
H29 −0.1521 0.6629 0.5729 0.026*
C30 0.00612 (8) 0.72303 (6) 0.56107 (5) 0.01725 (14)
C31 −0.00718 (8) 0.72319 (6) 0.47516 (5) 0.01655 (14)
H31 −0.0865 0.6964 0.4595 0.020*
C32 0.07859 (8) 0.65615 (6) 0.44077 (5) 0.01707 (14)
C33 0.13195 (9) 0.44576 (7) 0.68783 (6) 0.02455 (18)
C34 0.30291 (11) 0.50955 (7) 0.33411 (6) 0.0285 (2)
H1N 0.2766 (13) 0.4268 (10) 0.5677 (8) 0.029 (3)*
H2N 0.3531 (13) 0.4124 (11) 0.5038 (9) 0.034 (4)*
H3N 0.1661 (13) 0.5407 (11) 0.4605 (8) 0.029 (3)*
H4N 0.1007 (13) 0.5752 (10) 0.5266 (9) 0.029 (4)*
H34 0.3583 (14) 0.4788 (12) 0.3007 (10) 0.043 (4)*
H33 0.0717 (13) 0.4695 (10) 0.7176 (8) 0.029 (3)*
H1O 0.2537 (16) 0.3588 (14) 0.6949 (10) 0.053 (5)*
H2O 0.1899 (17) 0.6011 (14) 0.3288 (11) 0.057 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0355 (4) 0.0284 (3) 0.0168 (3) 0.0098 (3) 0.0073 (3) 0.0041 (2)
O2 0.0336 (4) 0.0227 (3) 0.0146 (3) 0.0073 (3) 0.0055 (3) 0.0018 (2)
O3 0.0336 (4) 0.0363 (4) 0.0190 (3) 0.0070 (3) 0.0042 (3) 0.0048 (3)
O4 0.0346 (4) 0.0314 (3) 0.0216 (3) 0.0098 (3) 0.0064 (3) 0.0046 (3)
O5 0.0367 (4) 0.0318 (4) 0.0218 (3) 0.0112 (3) 0.0033 (3) 0.0044 (3)
O6 0.0484 (5) 0.0313 (4) 0.0181 (3) 0.0163 (3) 0.0061 (3) 0.0017 (3)
N1 0.0319 (4) 0.0219 (3) 0.0171 (3) 0.0081 (3) 0.0055 (3) 0.0027 (3)
N2 0.0279 (4) 0.0188 (3) 0.0154 (3) 0.0048 (3) 0.0030 (3) 0.0018 (2)
C1 0.0186 (4) 0.0186 (3) 0.0152 (3) 0.0005 (3) 0.0015 (3) 0.0000 (3)
C2 0.0198 (4) 0.0244 (4) 0.0219 (4) −0.0018 (3) 0.0023 (3) 0.0028 (3)
C3 0.0260 (5) 0.0298 (4) 0.0220 (4) 0.0015 (4) 0.0080 (4) 0.0050 (3)
C4 0.0325 (5) 0.0270 (4) 0.0169 (4) 0.0063 (4) 0.0064 (3) 0.0006 (3)
C5 0.0285 (5) 0.0217 (4) 0.0176 (4) 0.0025 (3) 0.0005 (3) −0.0035 (3)
C6 0.0198 (4) 0.0181 (3) 0.0177 (4) 0.0011 (3) 0.0022 (3) −0.0019 (3)
C7 0.0201 (4) 0.0200 (3) 0.0222 (4) −0.0022 (3) 0.0005 (3) −0.0029 (3)
C8 0.0218 (4) 0.0189 (3) 0.0239 (4) −0.0020 (3) 0.0042 (3) −0.0019 (3)
C9 0.0233 (4) 0.0186 (3) 0.0188 (4) 0.0018 (3) 0.0045 (3) −0.0006 (3)
C10 0.0395 (6) 0.0184 (4) 0.0266 (5) 0.0036 (4) 0.0037 (4) 0.0008 (3)
C11 0.0432 (6) 0.0241 (4) 0.0245 (5) 0.0135 (4) 0.0020 (4) 0.0023 (3)
C12 0.0300 (5) 0.0342 (5) 0.0204 (4) 0.0128 (4) 0.0019 (4) 0.0017 (4)
C13 0.0219 (4) 0.0305 (4) 0.0175 (4) 0.0035 (3) 0.0016 (3) 0.0014 (3)
C14 0.0195 (4) 0.0208 (3) 0.0155 (3) 0.0020 (3) 0.0038 (3) 0.0000 (3)
C15 0.0198 (4) 0.0187 (3) 0.0156 (3) −0.0019 (3) 0.0007 (3) −0.0004 (3)
C16 0.0250 (4) 0.0168 (3) 0.0149 (3) 0.0008 (3) 0.0012 (3) −0.0018 (3)
C17 0.0212 (4) 0.0191 (3) 0.0137 (3) 0.0049 (3) 0.0042 (3) 0.0008 (3)
C18 0.0239 (4) 0.0300 (4) 0.0160 (4) 0.0089 (3) 0.0034 (3) 0.0027 (3)
C19 0.0377 (6) 0.0325 (5) 0.0186 (4) 0.0182 (4) 0.0071 (4) 0.0063 (3)
C20 0.0505 (7) 0.0216 (4) 0.0219 (4) 0.0135 (4) 0.0140 (4) 0.0056 (3)
C21 0.0401 (6) 0.0175 (3) 0.0232 (4) 0.0015 (3) 0.0123 (4) 0.0011 (3)
C22 0.0254 (4) 0.0172 (3) 0.0170 (4) 0.0030 (3) 0.0069 (3) 0.0000 (3)
C23 0.0218 (4) 0.0209 (3) 0.0228 (4) −0.0014 (3) 0.0053 (3) −0.0028 (3)
C24 0.0191 (4) 0.0214 (3) 0.0214 (4) 0.0011 (3) 0.0004 (3) −0.0034 (3)
C25 0.0224 (4) 0.0174 (3) 0.0144 (3) 0.0031 (3) 0.0004 (3) −0.0015 (3)
C26 0.0310 (5) 0.0224 (4) 0.0160 (4) 0.0028 (3) −0.0021 (3) −0.0026 (3)
C27 0.0418 (6) 0.0274 (4) 0.0138 (4) 0.0026 (4) 0.0045 (4) −0.0012 (3)
C28 0.0345 (5) 0.0297 (4) 0.0182 (4) −0.0001 (4) 0.0091 (4) 0.0016 (3)
C29 0.0244 (4) 0.0245 (4) 0.0175 (4) −0.0001 (3) 0.0046 (3) 0.0013 (3)
C30 0.0208 (4) 0.0172 (3) 0.0139 (3) 0.0020 (3) 0.0022 (3) 0.0001 (3)
C31 0.0180 (4) 0.0187 (3) 0.0129 (3) 0.0008 (3) 0.0013 (3) 0.0005 (3)
C32 0.0200 (4) 0.0168 (3) 0.0141 (3) 0.0006 (3) 0.0002 (3) −0.0005 (3)
C33 0.0256 (5) 0.0288 (4) 0.0190 (4) 0.0013 (3) 0.0014 (3) −0.0025 (3)
C34 0.0377 (6) 0.0260 (4) 0.0221 (4) 0.0095 (4) 0.0044 (4) −0.0006 (3)

Geometric parameters (Å, °)

O1—C16 1.2451 (11) C12—H12 0.9500
O2—C32 1.2473 (11) C13—C14 1.3907 (13)
O3—C33 1.3047 (13) C13—H13 0.9500
O3—H1O 0.926 (19) C14—C15 1.5132 (12)
O4—C33 1.2111 (13) C15—C16 1.5338 (13)
O5—C34 1.2076 (13) C15—H15 1.0000
O6—C34 1.3048 (13) C17—C18 1.3932 (13)
O6—H2O 0.91 (2) C17—C22 1.4000 (13)
N1—C16 1.3300 (12) C17—C31 1.5149 (12)
N1—H1N 0.884 (15) C18—C19 1.3937 (14)
N1—H2N 0.866 (16) C18—H18 0.9500
N2—C32 1.3277 (11) C19—C20 1.3855 (19)
N2—H3N 0.895 (15) C19—H19 0.9500
N2—H4N 0.843 (15) C20—C21 1.3811 (16)
C1—C2 1.3931 (13) C20—H20 0.9500
C1—C6 1.4086 (12) C21—C22 1.4087 (13)
C1—C15 1.5126 (12) C21—H21 0.9500
C2—C3 1.3879 (14) C22—C23 1.4611 (14)
C2—H2 0.9500 C23—C24 1.3480 (14)
C3—C4 1.3878 (15) C23—H23 0.9500
C3—H3 0.9500 C24—C25 1.4604 (13)
C4—C5 1.3877 (15) C24—H24 0.9500
C4—H4 0.9500 C25—C26 1.4072 (13)
C5—C6 1.4091 (13) C25—C30 1.4099 (13)
C5—H5 0.9500 C26—C27 1.3867 (16)
C6—C7 1.4601 (13) C26—H26 0.9500
C7—C8 1.3465 (14) C27—C28 1.3867 (16)
C7—H7 0.9500 C27—H27 0.9500
C8—C9 1.4608 (14) C28—C29 1.3904 (14)
C8—H8 0.9500 C28—H28 0.9500
C9—C14 1.4034 (13) C29—C30 1.3956 (13)
C9—C10 1.4082 (13) C29—H29 0.9500
C10—C11 1.3838 (16) C30—C31 1.5119 (12)
C10—H10 0.9500 C31—C32 1.5300 (12)
C11—C12 1.3883 (17) C31—H31 1.0000
C11—H11 0.9500 C33—H33 0.972 (15)
C12—C13 1.3911 (14) C34—H34 1.008 (17)
C33—O3—H1O 110.6 (11) N1—C16—C15 116.82 (8)
C34—O6—H2O 109.2 (12) C18—C17—C22 119.54 (8)
C16—N1—H1N 117.3 (9) C18—C17—C31 119.41 (8)
C16—N1—H2N 122.4 (10) C22—C17—C31 121.04 (8)
H1N—N1—H2N 120.3 (14) C17—C18—C19 120.93 (10)
C32—N2—H3N 117.1 (9) C17—C18—H18 119.5
C32—N2—H4N 119.1 (10) C19—C18—H18 119.5
H3N—N2—H4N 123.6 (13) C20—C19—C18 119.85 (10)
C2—C1—C6 119.38 (8) C20—C19—H19 120.1
C2—C1—C15 120.00 (8) C18—C19—H19 120.1
C6—C1—C15 120.50 (8) C21—C20—C19 119.61 (9)
C3—C2—C1 121.48 (9) C21—C20—H20 120.2
C3—C2—H2 119.3 C19—C20—H20 120.2
C1—C2—H2 119.3 C20—C21—C22 121.40 (10)
C4—C3—C2 119.63 (9) C20—C21—H21 119.3
C4—C3—H3 120.2 C22—C21—H21 119.3
C2—C3—H3 120.2 C17—C22—C21 118.59 (9)
C5—C4—C3 119.71 (9) C17—C22—C23 123.70 (8)
C5—C4—H4 120.1 C21—C22—C23 117.70 (9)
C3—C4—H4 120.1 C24—C23—C22 128.14 (9)
C4—C5—C6 121.37 (9) C24—C23—H23 115.9
C4—C5—H5 119.3 C22—C23—H23 115.9
C6—C5—H5 119.3 C23—C24—C25 128.22 (9)
C1—C6—C5 118.36 (8) C23—C24—H24 115.9
C1—C6—C7 123.44 (8) C25—C24—H24 115.9
C5—C6—C7 118.20 (8) C26—C25—C30 118.33 (9)
C8—C7—C6 128.27 (9) C26—C25—C24 118.05 (8)
C8—C7—H7 115.9 C30—C25—C24 123.61 (8)
C6—C7—H7 115.9 C27—C26—C25 121.58 (9)
C7—C8—C9 128.16 (9) C27—C26—H26 119.2
C7—C8—H8 115.9 C25—C26—H26 119.2
C9—C8—H8 115.9 C28—C27—C26 119.57 (9)
C14—C9—C10 118.46 (9) C28—C27—H27 120.2
C14—C9—C8 123.52 (8) C26—C27—H27 120.2
C10—C9—C8 118.02 (9) C27—C28—C29 119.86 (10)
C11—C10—C9 121.28 (10) C27—C28—H28 120.1
C11—C10—H10 119.4 C29—C28—H28 120.1
C9—C10—H10 119.4 C28—C29—C30 121.19 (9)
C10—C11—C12 119.63 (9) C28—C29—H29 119.4
C10—C11—H11 120.2 C30—C29—H29 119.4
C12—C11—H11 120.2 C29—C30—C25 119.38 (8)
C11—C12—C13 119.91 (10) C29—C30—C31 119.82 (8)
C11—C12—H12 120.0 C25—C30—C31 120.68 (8)
C13—C12—H12 120.0 C30—C31—C17 113.42 (7)
C14—C13—C12 120.85 (10) C30—C31—C32 113.29 (7)
C14—C13—H13 119.6 C17—C31—C32 111.73 (7)
C12—C13—H13 119.6 C30—C31—H31 105.9
C13—C14—C9 119.76 (8) C17—C31—H31 105.9
C13—C14—C15 119.54 (8) C32—C31—H31 105.9
C9—C14—C15 120.68 (8) O2—C32—N2 122.41 (8)
C1—C15—C14 113.51 (7) O2—C32—C31 119.78 (7)
C1—C15—C16 113.15 (7) N2—C32—C31 117.64 (8)
C14—C15—C16 111.80 (7) O4—C33—O3 125.51 (10)
C1—C15—H15 105.9 O4—C33—H33 122.5 (9)
C14—C15—H15 105.9 O3—C33—H33 112.0 (9)
C16—C15—H15 105.9 O5—C34—O6 125.69 (10)
O1—C16—N1 122.24 (9) O5—C34—H34 122.9 (10)
O1—C16—C15 120.82 (8) O6—C34—H34 111.4 (9)
C6—C1—C2—C3 −0.25 (14) C22—C17—C18—C19 −0.09 (13)
C15—C1—C2—C3 −176.46 (9) C31—C17—C18—C19 −178.49 (8)
C1—C2—C3—C4 1.11 (15) C17—C18—C19—C20 1.91 (15)
C2—C3—C4—C5 0.03 (15) C18—C19—C20—C21 −1.09 (15)
C3—C4—C5—C6 −2.05 (15) C19—C20—C21—C22 −1.53 (15)
C2—C1—C6—C5 −1.70 (13) C18—C17—C22—C21 −2.46 (13)
C15—C1—C6—C5 174.50 (8) C31—C17—C22—C21 175.92 (8)
C2—C1—C6—C7 178.35 (9) C18—C17—C22—C23 176.71 (8)
C15—C1—C6—C7 −5.46 (13) C31—C17—C22—C23 −4.92 (13)
C4—C5—C6—C1 2.87 (14) C20—C21—C22—C17 3.31 (14)
C4—C5—C6—C7 −177.17 (9) C20—C21—C22—C23 −175.91 (9)
C1—C6—C7—C8 −31.43 (15) C17—C22—C23—C24 −31.25 (15)
C5—C6—C7—C8 148.62 (10) C21—C22—C23—C24 147.93 (10)
C6—C7—C8—C9 0.51 (16) C22—C23—C24—C25 0.29 (16)
C7—C8—C9—C14 30.22 (15) C23—C24—C25—C26 −149.76 (10)
C7—C8—C9—C10 −148.87 (10) C23—C24—C25—C30 29.39 (14)
C14—C9—C10—C11 −2.97 (15) C30—C25—C26—C27 −3.13 (13)
C8—C9—C10—C11 176.17 (10) C24—C25—C26—C27 176.06 (9)
C9—C10—C11—C12 −0.07 (16) C25—C26—C27—C28 0.85 (15)
C10—C11—C12—C13 2.07 (16) C26—C27—C28—C29 1.48 (15)
C11—C12—C13—C14 −0.98 (15) C27—C28—C29—C30 −1.49 (15)
C12—C13—C14—C9 −2.12 (14) C28—C29—C30—C25 −0.84 (13)
C12—C13—C14—C15 176.15 (9) C28—C29—C30—C31 175.30 (9)
C10—C9—C14—C13 4.02 (14) C26—C25—C30—C29 3.08 (12)
C8—C9—C14—C13 −175.07 (9) C24—C25—C30—C29 −176.06 (8)
C10—C9—C14—C15 −174.22 (9) C26—C25—C30—C31 −173.03 (8)
C8—C9—C14—C15 6.69 (14) C24—C25—C30—C31 7.83 (12)
C2—C1—C15—C14 −119.84 (9) C29—C30—C31—C17 119.16 (9)
C6—C1—C15—C14 63.99 (11) C25—C30—C31—C17 −64.75 (10)
C2—C1—C15—C16 111.37 (9) C29—C30—C31—C32 −112.12 (9)
C6—C1—C15—C16 −64.80 (10) C25—C30—C31—C32 63.98 (10)
C13—C14—C15—C1 117.00 (9) C18—C17—C31—C30 −118.43 (9)
C9—C14—C15—C1 −64.75 (11) C22—C17—C31—C30 63.20 (11)
C13—C14—C15—C16 −113.52 (9) C18—C17—C31—C32 112.05 (9)
C9—C14—C15—C16 64.73 (11) C22—C17—C31—C32 −66.32 (10)
C1—C15—C16—O1 157.50 (8) C30—C31—C32—O2 −157.63 (8)
C14—C15—C16—O1 27.83 (12) C17—C31—C32—O2 −28.05 (11)
C1—C15—C16—N1 −26.25 (11) C30—C31—C32—N2 26.99 (11)
C14—C15—C16—N1 −155.92 (8) C17—C31—C32—N2 156.57 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4 0.884 (15) 2.035 (15) 2.9096 (12) 170.2 (13)
O3—H1O···O1 0.927 (18) 1.679 (19) 2.5971 (12) 169.9 (18)
O6—H2O···O2 0.91 (2) 1.66 (2) 2.5517 (12) 168.3 (19)
N2—H3N···O5 0.895 (15) 2.103 (15) 2.9645 (12) 161.2 (14)
N2—H4N···O4 0.843 (16) 2.237 (15) 2.9129 (12) 137.3 (13)
N1—H2N···O5 0.866 (16) 2.151 (16) 2.9088 (12) 145.9 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2044).

References

  1. Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr.22, 177–183.
  2. Bruker (2007). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem.70, 836–840. [PubMed]
  4. Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem.7, 88–94. [DOI] [PubMed]
  5. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  8. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [DOI] [PubMed]
  9. Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm DOI: 10.1039/b719717a.
  10. Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst.39, 922–924.
  11. Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci.95, 1918–1930. [DOI] [PubMed]
  12. Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
  13. Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.
  14. Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. [DOI] [PubMed]
  15. Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677. [DOI] [PubMed]
  16. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  17. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019181/rn2044sup1.cif

e-64-o1379-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019181/rn2044Isup2.hkl

e-64-o1379-Isup2.hkl (622.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES