Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1382. doi: 10.1107/S160053680801965X

2-Chloro-N′-(3,5-dibromo-2-hydroxy­benzyl­idene)benzohydrazide methanol solvate

Chun-Bao Tang a,*
PMCID: PMC2962015  PMID: 21203102

Abstract

The title Schiff base compound, C14H9Br2ClN2O2·CH4O, was derived from the condensation reaction of 3,5-dibromo­salicylaldehyde with 2-chloro­benzohydrazide. The dihedral angle between the two benzene rings is 48.2 (2)°. In the crystal structure, mol­ecules are linked through O—H⋯O and N—H⋯O inter­molecular hydrogen bonds, forming layers parallel to the bc plane. There is also an O—H⋯N intramolecular hydrogen bond.

Related literature

For related structures, see: Tang (2006); Tang, (2007a ,b ,c ,d ). For reference structural data, see: Allen et al. (1987).graphic file with name e-64-o1382-scheme1.jpg

Experimental

Crystal data

  • C14H9Br2ClN2O2·CH4O

  • M r = 464.54

  • Monoclinic, Inline graphic

  • a = 11.156 (4) Å

  • b = 9.696 (3) Å

  • c = 18.536 (3) Å

  • β = 120.356 (8)°

  • V = 1730.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.402, T max = 0.444 (expected range = 0.343–0.379)

  • 9035 measured reflections

  • 3627 independent reflections

  • 1895 reflections with I > 2σ(I)

  • R int = 0.101

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.160

  • S = 0.92

  • 3627 reflections

  • 215 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801965X/at2583sup1.cif

e-64-o1382-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801965X/at2583Isup2.hkl

e-64-o1382-Isup2.hkl (177.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 2.05 2.697 (9) 136
N2—H2⋯O3 0.89 (7) 1.946 (17) 2.840 (7) 173 (8)
O1—H1⋯N1 0.82 1.91 2.590 (6) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, the author has reported the structures of several Schiff base compounds (Tang, 2006;Tang, 2007a,b,c,d) and, in continuation of work in this area, reports herein the structure of the title compound, (I), a new Schiff base compound.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 48.2 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, and N1—N2—C8—C9 are 0.1 (2), 4.8 (2), and 4.3 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through O–H···O intermolecular hydrogen bonds (Table 1), forming layers parallel to the bc plane (Fig. 2).

Experimental

3,5-Dibromosalicylaldehyde (0.1 mmol, 28.0 mg) and 2-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 10 min to give a clear colorless solution. Colourless block-like crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement

H2 was located from a difference Fourier map and refined isotropically, with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C), 1.5Ueq(C15, O1 and O3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C14H9Br2ClN2O2·C1H4O1 F000 = 912
Mr = 464.54 Dx = 1.783 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2286 reflections
a = 11.156 (4) Å θ = 2.4–24.5º
b = 9.696 (3) Å µ = 4.85 mm1
c = 18.536 (3) Å T = 298 (2) K
β = 120.356 (8)º Block, colourless
V = 1730.1 (9) Å3 0.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3627 independent reflections
Radiation source: fine-focus sealed tube 1895 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.101
T = 298(2) K θmax = 27.0º
ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.402, Tmax = 0.444 k = −12→10
9035 measured reflections l = −23→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160   w = 1/[σ2(Fo2) + (0.0746P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
3627 reflections Δρmax = 0.81 e Å3
215 parameters Δρmin = −0.71 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0119 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.36755 (9) 1.09036 (8) 0.95218 (6) 0.0603 (4)
Br2 −0.19725 (9) 0.54059 (7) 1.04896 (6) 0.0557 (3)
Cl1 0.3094 (2) 1.28217 (17) 0.81645 (14) 0.0580 (6)
O1 −0.1788 (5) 1.0664 (4) 0.8816 (3) 0.0443 (14)
H1 −0.1429 1.0532 0.8531 0.067*
O2 0.0171 (5) 1.1554 (5) 0.7617 (4) 0.0543 (15)
O3 0.2494 (6) 0.7016 (5) 0.8572 (4) 0.0560 (16)
H3A 0.1924 0.6511 0.8203 0.084*
N1 0.0034 (6) 0.9492 (5) 0.8546 (4) 0.0373 (16)
N2 0.0939 (6) 0.9488 (5) 0.8251 (4) 0.0388 (16)
C1 −0.0946 (7) 0.8351 (6) 0.9261 (4) 0.0325 (16)
C2 −0.1773 (7) 0.9478 (5) 0.9204 (4) 0.0307 (16)
C3 −0.2590 (7) 0.9362 (6) 0.9571 (5) 0.0374 (18)
C4 −0.2624 (7) 0.8177 (6) 0.9961 (5) 0.0400 (19)
H4 −0.3182 0.8124 1.0200 0.048*
C5 −0.1835 (7) 0.7073 (6) 0.9999 (5) 0.0386 (18)
C6 −0.0988 (7) 0.7157 (6) 0.9662 (5) 0.0389 (19)
H6 −0.0438 0.6407 0.9702 0.047*
C7 0.0008 (7) 0.8415 (6) 0.8926 (5) 0.0415 (19)
H7 0.0583 0.7672 0.8993 0.050*
C8 0.0941 (7) 1.0545 (6) 0.7797 (5) 0.0353 (18)
C9 0.1906 (7) 1.0373 (6) 0.7455 (4) 0.0357 (17)
C10 0.2917 (8) 1.1341 (6) 0.7595 (5) 0.0415 (19)
C11 0.3785 (8) 1.1138 (7) 0.7278 (5) 0.049 (2)
H11 0.4449 1.1799 0.7366 0.058*
C12 0.3676 (9) 0.9973 (8) 0.6836 (6) 0.059 (3)
H12 0.4265 0.9842 0.6624 0.071*
C13 0.2705 (9) 0.9004 (7) 0.6706 (6) 0.056 (2)
H13 0.2645 0.8205 0.6412 0.068*
C14 0.1819 (8) 0.9187 (7) 0.7002 (5) 0.048 (2)
H14 0.1152 0.8521 0.6901 0.057*
C15 0.3807 (10) 0.6749 (9) 0.8694 (7) 0.092 (4)
H15A 0.4377 0.7555 0.8916 0.138*
H15B 0.3730 0.6508 0.8170 0.138*
H15C 0.4221 0.5998 0.9080 0.138*
H2 0.149 (7) 0.875 (5) 0.839 (5) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0653 (7) 0.0618 (5) 0.0723 (7) 0.0269 (4) 0.0484 (6) 0.0132 (4)
Br2 0.0785 (8) 0.0421 (4) 0.0704 (7) 0.0006 (4) 0.0551 (6) 0.0114 (4)
Cl1 0.0664 (17) 0.0464 (10) 0.0727 (16) −0.0114 (9) 0.0436 (15) −0.0142 (10)
O1 0.055 (4) 0.040 (2) 0.055 (4) 0.009 (2) 0.040 (3) 0.008 (2)
O2 0.050 (4) 0.047 (3) 0.080 (4) 0.019 (3) 0.044 (4) 0.025 (3)
O3 0.044 (4) 0.045 (3) 0.080 (5) 0.002 (2) 0.033 (4) 0.002 (3)
N1 0.048 (4) 0.030 (3) 0.050 (4) 0.008 (2) 0.037 (4) 0.005 (3)
N2 0.047 (4) 0.030 (3) 0.057 (4) 0.007 (2) 0.039 (4) 0.011 (3)
C1 0.028 (5) 0.034 (3) 0.034 (4) 0.005 (3) 0.015 (4) 0.007 (3)
C2 0.030 (5) 0.027 (3) 0.030 (4) −0.001 (3) 0.012 (4) 0.004 (3)
C3 0.036 (5) 0.037 (3) 0.042 (5) 0.006 (3) 0.021 (4) −0.004 (3)
C4 0.038 (5) 0.051 (4) 0.044 (5) 0.000 (4) 0.030 (5) −0.004 (4)
C5 0.049 (5) 0.035 (3) 0.041 (5) −0.006 (3) 0.030 (5) 0.004 (3)
C6 0.038 (5) 0.031 (3) 0.059 (6) 0.005 (3) 0.032 (5) −0.001 (3)
C7 0.049 (5) 0.029 (3) 0.059 (6) 0.002 (3) 0.036 (5) −0.001 (3)
C8 0.039 (5) 0.033 (3) 0.042 (5) −0.004 (3) 0.026 (4) −0.007 (3)
C9 0.034 (5) 0.038 (3) 0.039 (5) 0.003 (3) 0.022 (4) 0.010 (3)
C10 0.051 (6) 0.041 (3) 0.043 (5) −0.003 (3) 0.032 (5) −0.003 (3)
C11 0.046 (6) 0.050 (4) 0.064 (6) −0.009 (3) 0.039 (5) −0.003 (4)
C12 0.065 (6) 0.071 (5) 0.074 (7) 0.004 (4) 0.059 (6) 0.004 (5)
C13 0.077 (7) 0.052 (4) 0.063 (6) 0.005 (4) 0.052 (6) −0.004 (4)
C14 0.061 (6) 0.040 (4) 0.052 (6) −0.003 (3) 0.036 (5) 0.003 (4)
C15 0.069 (8) 0.083 (6) 0.148 (11) 0.012 (6) 0.072 (9) 0.010 (7)

Geometric parameters (Å, °)

Br1—C3 1.897 (6) C4—H4 0.9300
Br2—C5 1.899 (6) C5—C6 1.372 (8)
Cl1—C10 1.733 (6) C6—H6 0.9300
O1—C2 1.352 (6) C7—H7 0.9300
O1—H1 0.8200 C8—C9 1.509 (8)
O2—C8 1.232 (7) C9—C10 1.387 (9)
O3—C15 1.389 (9) C9—C14 1.399 (9)
O3—H3A 0.8200 C10—C11 1.377 (8)
N1—C7 1.269 (7) C11—C12 1.365 (10)
N1—N2 1.369 (6) C11—H11 0.9300
N2—C8 1.327 (7) C12—C13 1.361 (10)
N2—H2 0.89 (7) C12—H12 0.9300
C1—C6 1.390 (8) C13—C14 1.362 (9)
C1—C2 1.400 (8) C13—H13 0.9300
C1—C7 1.480 (8) C14—H14 0.9300
C2—C3 1.389 (8) C15—H15A 0.9600
C3—C4 1.368 (8) C15—H15B 0.9600
C4—C5 1.366 (8) C15—H15C 0.9600
C2—O1—H1 109.5 O2—C8—N2 124.1 (5)
C15—O3—H3A 109.5 O2—C8—C9 121.5 (6)
C7—N1—N2 116.6 (5) N2—C8—C9 114.3 (5)
C8—N2—N1 119.3 (5) C10—C9—C14 118.1 (5)
C8—N2—H2 125 (5) C10—C9—C8 122.2 (6)
N1—N2—H2 115 (5) C14—C9—C8 119.7 (5)
C6—C1—C2 119.4 (5) C11—C10—C9 120.3 (6)
C6—C1—C7 119.0 (5) C11—C10—Cl1 119.3 (5)
C2—C1—C7 121.5 (5) C9—C10—Cl1 120.4 (4)
O1—C2—C3 119.6 (5) C12—C11—C10 120.4 (6)
O1—C2—C1 122.3 (5) C12—C11—H11 119.8
C3—C2—C1 118.1 (5) C10—C11—H11 119.8
C4—C3—C2 121.8 (5) C13—C12—C11 120.0 (6)
C4—C3—Br1 119.9 (4) C13—C12—H12 120.0
C2—C3—Br1 118.3 (5) C11—C12—H12 120.0
C5—C4—C3 119.7 (5) C12—C13—C14 120.9 (7)
C5—C4—H4 120.1 C12—C13—H13 119.6
C3—C4—H4 120.1 C14—C13—H13 119.6
C4—C5—C6 120.3 (5) C13—C14—C9 120.3 (7)
C4—C5—Br2 119.0 (4) C13—C14—H14 119.8
C6—C5—Br2 120.6 (5) C9—C14—H14 119.8
C5—C6—C1 120.7 (5) O3—C15—H15A 109.5
C5—C6—H6 119.7 O3—C15—H15B 109.5
C1—C6—H6 119.7 H15A—C15—H15B 109.5
N1—C7—C1 119.4 (5) O3—C15—H15C 109.5
N1—C7—H7 120.3 H15A—C15—H15C 109.5
C1—C7—H7 120.3 H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O2i 0.82 2.05 2.697 (9) 136
N2—H2···O3 0.89 (7) 1.946 (17) 2.840 (7) 173 (8)
O1—H1···N1 0.82 1.91 2.590 (6) 140

Symmetry codes: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2583).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tang, C.-B. (2006). Acta Cryst. E62, m2629–m2630.
  6. Tang, C.-B. (2007a). Acta Cryst. E63, m2654.
  7. Tang, C.-B. (2007b). Acta Cryst. E63, m2785–m2786.
  8. Tang, C.-B. (2007c). Acta Cryst. E63, o4545.
  9. Tang, C.-B. (2007d). Acta Cryst. E63, o4841.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801965X/at2583sup1.cif

e-64-o1382-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801965X/at2583Isup2.hkl

e-64-o1382-Isup2.hkl (177.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES