Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1385. doi: 10.1107/S1600536808019582

6-De­oxy-α-l-talopyran­ose

K Victoria Booth a,*, Sarah F Jenkinson a, George W J Fleet a, Pushpakiran Gullapalli b, Akihide Yoshihara b, Ken Izumori b, David J Watkin c
PMCID: PMC2962018  PMID: 21203105

Abstract

X-ray crystallography showed that the title compound, C6H12O5, crystallizes in the α-pyran­ose form with the six-membered ring in a chair conformation. The crystal structure exists as a three-dimensional hydrogen-bonded network of mol­ecules with each mol­ecule acting as a donor and aceptor for four hydrogen bonds. The absolute configuration was determined by the use of l-fucose as starting material.

Related literature

For related literature, see: Beadle et al. (1992); Izumori (2002, 2006); Granstrom et al. (2004); Yoshihara et al. (2008).graphic file with name e-64-o1385-scheme1.jpg

Experimental

Crystal data

  • C6H12O5

  • M r = 164.16

  • Orthorhombic, Inline graphic

  • a = 6.4939 (3) Å

  • b = 7.4874 (4) Å

  • c = 14.8382 (8) Å

  • V = 721.47 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) T min = 0.97, T max = 1.00 (expected range = 0.967–0.997)

  • 4390 measured reflections

  • 968 independent reflections

  • 863 reflections with I > 2.0σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.072

  • S = 1.03

  • 968 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Nonius, 1997–2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019582/lh2652sup1.cif

e-64-o1385-sup1.cif (13.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019582/lh2652Isup2.hkl

e-64-o1385-Isup2.hkl (49.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H7⋯O1i 0.81 2.04 2.818 (2) 162
O1—H8⋯O10 0.82 1.98 2.740 (2) 156
O10—H10⋯O9i 0.84 1.85 2.686 (2) 177
O11—H1⋯O4ii 0.87 1.94 2.812 (2) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge the Oxford University Chemical Crystallography service for use of the instruments. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

supplementary crystallographic information

Comment

The range of rare sugars that are now readily available has increased in recent years due to both chemical (Beadle et al., 1992) and biotechnological (Izumori, 2006; Izumori, 2002; Granstrom et al., 2004) advances. The methodology developed by Izumori et al. for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008) in large amounts in water.

The Izumoring method is demonstrated here with the synthesis of 6-deoxy-L-talose 3 from L-fucose 1(Fig. 1) by a series of isomerizations. Firstly, using D-arabinose isomerase, L-fucose was isomerized to 6-deoxy-L-tagatose 2 and then using L-rhamnose isomerase this was further isomerized to give 6-deoxy-L-talose 3.

6-Deoxy-L-talose crystallizes solely in the α-pyranose form (Fig. 2). The absolute configuration was determined from the starting material. The crystal exists as an hydrogen bonded network with each molecule acting as a donor and acceptor for 4 hydrogen bonds. Non-conventional hydrogen bonds have been ignored.

Experimental

The title compound was recrystallized from methanol: m.p. 120–123°C; [α]D20 -18.6 (c, 0.94 in H2O).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic scheme.

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram of the title compound projected along the a-axis.

Crystal data

C6H12O5 F000 = 352
Mr = 164.16 Dx = 1.511 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 890 reflections
a = 6.4939 (3) Å θ = 5–27º
b = 7.4874 (4) Å µ = 0.13 mm1
c = 14.8382 (8) Å T = 150 K
V = 721.47 (6) Å3 Plate, colourless
Z = 4 0.25 × 0.25 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer 863 reflections with I > 2.0σ(I)
Monochromator: graphite Rint = 0.037
T = 150 K θmax = 27.5º
ω scans θmin = 5.2º
Absorption correction: multi-scanDENZO/SCALEPACK (Otwinowski & Minor, 1997) h = −8→8
Tmin = 0.97, Tmax = 1.00 k = −9→9
4390 measured reflections l = −19→19
968 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029   Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.04P] ,where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max = 0.0002
S = 1.03 Δρmax = 0.24 e Å3
968 reflections Δρmin = −0.21 e Å3
100 parameters Extinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.95002 (16) 0.08900 (18) 0.35376 (7) 0.0210
C2 0.7416 (2) 0.1250 (2) 0.32982 (10) 0.0175
C3 0.6113 (3) 0.1509 (3) 0.41551 (10) 0.0188
O4 0.65011 (17) 0.31964 (16) 0.45740 (7) 0.0183
C5 0.6150 (2) 0.4717 (2) 0.39897 (10) 0.0194
C6 0.6412 (3) 0.6382 (3) 0.45454 (12) 0.0271
C7 0.7657 (2) 0.4593 (2) 0.32003 (10) 0.0187
C8 0.7208 (2) 0.2889 (3) 0.26846 (10) 0.0186
O9 0.85143 (18) 0.26675 (18) 0.19178 (7) 0.0243
O10 0.97297 (17) 0.45445 (18) 0.35319 (8) 0.0232
O11 0.40458 (18) 0.1333 (2) 0.39115 (8) 0.0254
H21 0.6937 0.0193 0.2985 0.0197*
H31 0.6474 0.0567 0.4621 0.0197*
H51 0.4756 0.4675 0.3773 0.0236*
H61 0.6179 0.7441 0.4188 0.0406*
H62 0.5480 0.6346 0.5057 0.0398*
H63 0.7791 0.6452 0.4743 0.0401*
H71 0.7508 0.5628 0.2786 0.0214*
H81 0.5761 0.2938 0.2475 0.0221*
H7 0.8826 0.3664 0.1753 0.0374*
H8 0.9866 0.1914 0.3632 0.0333*
H10 1.0243 0.5538 0.3399 0.0350*
H1 0.3258 0.1436 0.4383 0.0408*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0198 (5) 0.0204 (7) 0.0229 (6) 0.0030 (5) −0.0010 (5) −0.0005 (5)
C2 0.0184 (7) 0.0188 (9) 0.0153 (7) −0.0001 (8) −0.0013 (6) −0.0015 (6)
C3 0.0209 (8) 0.0186 (9) 0.0169 (7) −0.0037 (7) 0.0005 (6) −0.0021 (7)
O4 0.0223 (5) 0.0178 (7) 0.0150 (5) −0.0008 (5) −0.0006 (5) 0.0007 (5)
C5 0.0220 (8) 0.0184 (9) 0.0179 (7) 0.0019 (8) −0.0015 (7) 0.0002 (7)
C6 0.0378 (10) 0.0202 (10) 0.0232 (8) 0.0022 (9) 0.0025 (9) −0.0040 (7)
C7 0.0183 (7) 0.0202 (9) 0.0176 (7) 0.0031 (7) 0.0006 (7) 0.0029 (7)
C8 0.0197 (7) 0.0212 (10) 0.0149 (7) 0.0011 (7) 0.0013 (6) −0.0005 (7)
O9 0.0335 (6) 0.0213 (7) 0.0180 (5) 0.0043 (6) 0.0087 (5) 0.0025 (5)
O10 0.0195 (5) 0.0195 (7) 0.0306 (6) −0.0026 (5) −0.0015 (5) 0.0023 (6)
O11 0.0199 (5) 0.0331 (8) 0.0233 (5) −0.0074 (6) 0.0028 (5) −0.0047 (6)

Geometric parameters (Å, °)

O1—C2 1.4250 (19) C6—H61 0.966
O1—H8 0.815 C6—H62 0.971
C2—C3 1.540 (2) C6—H63 0.944
C2—C8 1.534 (2) C7—C8 1.516 (2)
C2—H21 0.969 C7—O10 1.4334 (19)
C3—O4 1.430 (2) C7—H71 0.994
C3—O11 1.3965 (19) C8—O9 1.4288 (18)
C3—H31 1.015 C8—H81 0.990
O4—C5 1.449 (2) O9—H7 0.811
C5—C6 1.504 (2) O10—H10 0.839
C5—C7 1.529 (2) O11—H1 0.870
C5—H51 0.962
C2—O1—H8 98.1 C5—C6—H62 109.6
O1—C2—C3 109.88 (12) H61—C6—H62 110.8
O1—C2—C8 112.50 (13) C5—C6—H63 108.9
C3—C2—C8 109.93 (14) H61—C6—H63 105.9
O1—C2—H21 105.7 H62—C6—H63 110.5
C3—C2—H21 108.8 C5—C7—C8 108.34 (14)
C8—C2—H21 109.9 C5—C7—O10 109.84 (12)
C2—C3—O4 111.93 (14) C8—C7—O10 109.43 (14)
C2—C3—O11 107.62 (12) C5—C7—H71 111.3
O4—C3—O11 111.43 (15) C8—C7—H71 109.0
C2—C3—H31 110.4 O10—C7—H71 108.9
O4—C3—H31 106.1 C2—C8—C7 110.89 (12)
O11—C3—H31 109.4 C2—C8—O9 109.12 (13)
C3—O4—C5 113.97 (11) C7—C8—O9 112.67 (13)
O4—C5—C6 107.79 (12) C2—C8—H81 107.4
O4—C5—C7 108.05 (13) C7—C8—H81 108.0
C6—C5—C7 113.45 (14) O9—C8—H81 108.5
O4—C5—H51 108.8 C8—O9—H7 106.4
C6—C5—H51 108.5 C7—O10—H10 105.7
C7—C5—H51 110.1 C3—O11—H1 110.4
C5—C6—H61 111.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O9—H7···O1i 0.81 2.04 2.818 (2) 162
O1—H8···C7 0.82 2.55 3.061 (2) 122
O1—H8···O10 0.82 1.98 2.740 (2) 156
O10—H10···O9i 0.84 1.85 2.686 (2) 177
O11—H1···O4ii 0.87 1.94 2.812 (2) 177

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2652).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [DOI] [PubMed]
  5. Izumori, K. (2002). Naturwissenschaften, 89, 120–124. [DOI] [PubMed]
  6. Izumori, K. (2006). J. Biotech.124, 717–722. [DOI] [PubMed]
  7. Nonius (1997–2001). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  10. Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019582/lh2652sup1.cif

e-64-o1385-sup1.cif (13.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019582/lh2652Isup2.hkl

e-64-o1385-Isup2.hkl (49.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES