Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1390. doi: 10.1107/S1600536808019351

3-Chloro­phenyl 4-methyl­benzoate

B Thimme Gowda a,*, Sabine Foro b, K S Babitha a, Hartmut Fuess b
PMCID: PMC2962023  PMID: 21203110

Abstract

The crystal structure of the title compound 3CP4MBA, C14H11ClO2, resembles those of 3-methyl­phenyl 4-methyl­benzoate (3MP4MBA), 4-methyl­phenyl 4-methyl­benzoate (4MP4MBA), 4-methyl­phenyl 4-chloro­benzoate (4CP4MBA) and other aryl benzoates with similar bond parameters. The dihedral angle between the benzene rings in 3CP4MBA is 71.75 (7)°, compared with 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. In the crystal structure, the mol­ecules are aligned with their long axis approximately along the [101] direction and stacked along the c axis.

Related literature

For related literature, see: Gowda et al. (2007, 2008); Nayak & Gowda (2008).graphic file with name e-64-o1390-scheme1.jpg

Experimental

Crystal data

  • C14H11ClO2

  • M r = 246.68

  • Monoclinic, Inline graphic

  • a = 13.706 (2) Å

  • b = 12.142 (2) Å

  • c = 7.3807 (5) Å

  • β = 100.625 (9)°

  • V = 1207.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.69 mm−1

  • T = 299 (2) K

  • 0.50 × 0.27 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.344, T max = 0.767

  • 4283 measured reflections

  • 2146 independent reflections

  • 1801 reflections with I > 2σ(I)

  • R int = 0.033

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.111

  • S = 1.04

  • 2146 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019351/hk2479sup1.cif

e-64-o1390-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019351/hk2479Isup2.hkl

e-64-o1390-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2007, 2008), the structure of 3-chlorophenyl 4-methylbenzoate (3CP4MBA) has been determined. The structure of 3CP4MBA (Fig. 1) is similar to those of 3-methylphenyl 4-methyl- benzoate (3MP4MBA), 4-methylphenyl 4-methylbenzoate (4MP4MBA), 4-methylphenyl 4-chlorobenzoate (4MP4CBA) and other aryl benzoates (Gowda et al., 2007, 2008). The bond parameters in 3CP4MBA are similar to those in 3MP4MBA, 4MP4MBA, 4CP4MBA and other aryl benzoates. The dihedral angle between the benzene and phenyl rings in 3CP4MBA is 71.75 (7)°, compared to the values of 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. In the crystal structure, the molecules are elongated approximatelly along the [101] direction and stacked along the c axis (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of its ethanolic solution.

Refinement

H atoms (for CH) were located in difference map and refined [ C-H = 0.89 (2) -0.98 (2) Å; Uiso(H) = 0.067-0.079 Å2]. The methyl H atoms were positioned geometrically, with C-H= 0.96 Å, and constrained to ride on the parent atom, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Molecular packing of the title compound.

Crystal data

C14H11ClO2 F000 = 512
Mr = 246.68 Dx = 1.357 Mg m3
Monoclinic, P21/c Cu Kα radiation λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 13.706 (2) Å θ = 4.9–22.0º
b = 12.142 (2) Å µ = 2.69 mm1
c = 7.3807 (5) Å T = 299 (2) K
β = 100.625 (9)º Plate, colorless
V = 1207.2 (3) Å3 0.50 × 0.27 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.033
Radiation source: fine-focus sealed tube θmax = 67.0º
Monochromator: graphite θmin = 3.3º
T = 299(2) K h = −16→16
ω/2θ scans k = −14→0
Absorption correction: ψ scan(North et al., 1968) l = −8→8
Tmin = 0.344, Tmax = 0.767 3 standard reflections
4283 measured reflections every 120 min
2146 independent reflections intensity decay: 1.0%
1801 reflections with I > 2σ(I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038   w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2388P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111 (Δ/σ)max = 0.004
S = 1.04 Δρmax = 0.19 e Å3
2146 reflections Δρmin = −0.28 e Å3
179 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0200 (13)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.09746 (4) 0.45783 (6) 0.18459 (7) 0.0902 (3)
O1 0.38017 (9) 0.38035 (10) 0.71453 (19) 0.0659 (4)
O2 0.38682 (9) 0.19643 (10) 0.6950 (2) 0.0690 (4)
C1 0.27767 (12) 0.37826 (14) 0.6477 (3) 0.0550 (4)
C2 0.24434 (13) 0.41200 (15) 0.4698 (3) 0.0557 (4)
H2 0.2874 (15) 0.4294 (17) 0.388 (3) 0.067*
C3 0.14290 (13) 0.41514 (15) 0.4089 (2) 0.0566 (4)
C4 0.07707 (14) 0.38530 (16) 0.5193 (3) 0.0612 (5)
H4 0.0062 (16) 0.3899 (17) 0.472 (3) 0.073*
C5 0.11328 (15) 0.35196 (18) 0.6970 (3) 0.0655 (5)
H5 0.0675 (17) 0.3304 (19) 0.779 (3) 0.079*
C6 0.21440 (15) 0.34873 (16) 0.7635 (3) 0.0627 (5)
H6 0.2394 (16) 0.3273 (18) 0.878 (3) 0.075*
C7 0.42774 (12) 0.28135 (14) 0.7426 (2) 0.0518 (4)
C8 0.53187 (12) 0.29444 (13) 0.8356 (2) 0.0492 (4)
C9 0.58762 (14) 0.20077 (15) 0.8849 (3) 0.0581 (5)
H9 0.5605 (15) 0.1327 (19) 0.856 (3) 0.070*
C10 0.68465 (14) 0.20926 (17) 0.9760 (3) 0.0631 (5)
H10 0.7217 (16) 0.1486 (19) 1.014 (3) 0.076*
C11 0.72884 (13) 0.31058 (17) 1.0174 (3) 0.0602 (5)
C12 0.67287 (14) 0.40421 (17) 0.9643 (3) 0.0614 (5)
H12 0.7006 (16) 0.4749 (19) 0.989 (3) 0.074*
C13 0.57564 (13) 0.39698 (15) 0.8758 (3) 0.0561 (4)
H13 0.5378 (15) 0.4611 (17) 0.839 (3) 0.067*
C14 0.83424 (15) 0.3191 (2) 1.1193 (3) 0.0819 (7)
H14A 0.8782 0.3245 1.0322 0.098*
H14B 0.8506 0.2549 1.1944 0.098*
H14C 0.8412 0.3835 1.1961 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0729 (4) 0.1236 (6) 0.0670 (4) 0.0106 (3) −0.0054 (2) 0.0248 (3)
O1 0.0505 (7) 0.0512 (7) 0.0862 (9) −0.0002 (5) −0.0126 (6) 0.0011 (6)
O2 0.0537 (7) 0.0552 (8) 0.0950 (10) −0.0058 (6) 0.0059 (7) −0.0148 (7)
C1 0.0483 (9) 0.0433 (9) 0.0673 (10) 0.0012 (7) −0.0055 (8) −0.0030 (8)
C2 0.0517 (9) 0.0516 (9) 0.0619 (10) 0.0013 (8) 0.0050 (8) 0.0000 (8)
C3 0.0541 (9) 0.0547 (10) 0.0566 (10) 0.0075 (8) −0.0011 (8) 0.0029 (8)
C4 0.0496 (9) 0.0574 (11) 0.0735 (12) 0.0050 (8) 0.0031 (9) 0.0024 (9)
C5 0.0618 (11) 0.0634 (11) 0.0720 (12) 0.0015 (9) 0.0139 (9) 0.0075 (10)
C6 0.0679 (11) 0.0571 (11) 0.0583 (10) 0.0017 (9) −0.0006 (9) 0.0054 (9)
C7 0.0502 (9) 0.0519 (9) 0.0525 (9) −0.0013 (8) 0.0071 (7) −0.0023 (7)
C8 0.0482 (9) 0.0513 (9) 0.0477 (8) 0.0003 (7) 0.0074 (7) −0.0004 (7)
C9 0.0559 (10) 0.0495 (10) 0.0688 (11) −0.0001 (8) 0.0111 (8) 0.0004 (9)
C10 0.0533 (10) 0.0620 (11) 0.0733 (12) 0.0108 (9) 0.0096 (9) 0.0114 (9)
C11 0.0487 (9) 0.0764 (12) 0.0543 (10) 0.0012 (8) 0.0062 (7) 0.0041 (8)
C12 0.0553 (10) 0.0593 (11) 0.0659 (11) −0.0069 (9) 0.0016 (8) −0.0070 (9)
C13 0.0530 (9) 0.0496 (10) 0.0622 (10) 0.0020 (8) 0.0016 (8) −0.0026 (8)
C14 0.0545 (11) 0.1051 (18) 0.0804 (14) −0.0022 (11) −0.0028 (10) 0.0104 (13)

Geometric parameters (Å, °)

C1—C2 1.371 (3) C8—C9 1.381 (2)
C1—C6 1.373 (3) C8—C13 1.390 (2)
C1—O1 1.401 (2) C9—C10 1.379 (3)
C2—C3 1.381 (2) C9—H9 0.91 (2)
C2—H2 0.94 (2) C10—C11 1.380 (3)
C3—C4 1.371 (3) C10—H10 0.91 (2)
C3—Cl1 1.7372 (18) C11—C12 1.387 (3)
C4—C5 1.375 (3) C11—C14 1.504 (3)
C4—H4 0.97 (2) C12—C13 1.374 (3)
C5—C6 1.383 (3) C12—H12 0.94 (2)
C5—H5 0.98 (2) C13—H13 0.95 (2)
C6—H6 0.89 (2) C14—H14A 0.9600
C7—O2 1.195 (2) C14—H14B 0.9600
C7—O1 1.365 (2) C14—H14C 0.9600
C7—C8 1.474 (2)
C2—C1—C6 122.49 (17) C13—C8—C7 122.60 (15)
C2—C1—O1 117.87 (17) C10—C9—C8 120.27 (17)
C6—C1—O1 119.54 (17) C10—C9—H9 119.7 (13)
C1—C2—C3 117.26 (18) C8—C9—H9 120.1 (13)
C1—C2—H2 122.8 (13) C9—C10—C11 121.26 (18)
C3—C2—H2 119.9 (13) C9—C10—H10 121.6 (14)
C4—C3—C2 122.20 (17) C11—C10—H10 117.1 (14)
C4—C3—Cl1 119.04 (14) C10—C11—C12 118.08 (17)
C2—C3—Cl1 118.76 (15) C10—C11—C14 120.93 (18)
C3—C4—C5 118.89 (17) C12—C11—C14 120.98 (19)
C3—C4—H4 119.9 (12) C13—C12—C11 121.28 (18)
C5—C4—H4 121.2 (13) C13—C12—H12 118.1 (13)
C4—C5—C6 120.6 (2) C11—C12—H12 120.6 (14)
C4—C5—H5 120.3 (13) C12—C13—C8 120.07 (17)
C6—C5—H5 119.1 (13) C12—C13—H13 121.0 (13)
C1—C6—C5 118.57 (18) C8—C13—H13 118.9 (13)
C1—C6—H6 119.4 (14) C11—C14—H14A 109.5
C5—C6—H6 122.0 (14) C11—C14—H14B 109.5
O2—C7—O1 122.00 (15) H14A—C14—H14B 109.5
O2—C7—C8 126.27 (16) C11—C14—H14C 109.5
O1—C7—C8 111.73 (14) H14A—C14—H14C 109.5
C9—C8—C13 119.03 (16) H14B—C14—H14C 109.5
C9—C8—C7 118.37 (15) C7—O1—C1 117.23 (13)
C6—C1—C2—C3 −0.2 (3) C13—C8—C9—C10 1.3 (3)
O1—C1—C2—C3 −176.61 (15) C7—C8—C9—C10 −178.50 (17)
C1—C2—C3—C4 −0.5 (3) C8—C9—C10—C11 −1.0 (3)
C1—C2—C3—Cl1 179.81 (14) C9—C10—C11—C12 −0.2 (3)
C2—C3—C4—C5 0.5 (3) C9—C10—C11—C14 179.1 (2)
Cl1—C3—C4—C5 −179.75 (15) C10—C11—C12—C13 1.1 (3)
C3—C4—C5—C6 0.1 (3) C14—C11—C12—C13 −178.1 (2)
C2—C1—C6—C5 0.8 (3) C11—C12—C13—C8 −0.8 (3)
O1—C1—C6—C5 177.16 (17) C9—C8—C13—C12 −0.4 (3)
C4—C5—C6—C1 −0.8 (3) C7—C8—C13—C12 179.41 (17)
O2—C7—C8—C9 −4.5 (3) O2—C7—O1—C1 7.6 (3)
O1—C7—C8—C9 175.56 (16) C8—C7—O1—C1 −172.44 (15)
O2—C7—C8—C13 175.72 (19) C2—C1—O1—C7 −109.35 (18)
O1—C7—C8—C13 −4.2 (2) C6—C1—O1—C7 74.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2479).

References

  1. Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.
  2. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.
  3. Gowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88. [DOI] [PMC free article] [PubMed]
  4. Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63 In the press.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019351/hk2479sup1.cif

e-64-o1390-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019351/hk2479Isup2.hkl

e-64-o1390-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES