Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1395. doi: 10.1107/S1600536808019302

2,5,7-Trimethyl-3-phenyl­sulfinyl-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2962028  PMID: 21203115

Abstract

The title compound, C17H16O2S, was prepared by the oxidation of 2,5,7-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The phenyl ring is nearly perpendicular to the plane of the benzofuran unit [88.30 (9)°] and is tilted slightly towards it. No π–π or C—H⋯π inter­actions are observed between neighbouring mol­ecules in the crystal structure because of steric hindrance induced by the three methyl groups.

Related literature

For the crystal structures of similar 3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2008).graphic file with name e-64-o1395-scheme1.jpg

Experimental

Crystal data

  • C17H16O2S

  • M r = 284.36

  • Monoclinic, Inline graphic

  • a = 18.393 (2) Å

  • b = 6.1515 (6) Å

  • c = 13.054 (1) Å

  • β = 93.024 (2)°

  • V = 1474.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8615 measured reflections

  • 3215 independent reflections

  • 1611 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.163

  • S = 1.01

  • 3215 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019302/rn2045sup1.cif

e-64-o1395-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019302/rn2045Isup2.hkl

e-64-o1395-Isup2.hkl (157.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to the our communications on the synthesis and structures of 3-phenylsulfinyl-1-benzofuran analogues, viz. 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007) and 2,4,6,7-tetramethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2008). Here we report the crystal structure of the title compound, 2,5,7-trimethyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [88.30 (9)°] and is tilted slightly towards it. In the crystal structure, π—π or C—H···π interactions between adjacent molecules are prevented by the steric influence of the three methyl groups in the molecule.

Experimental

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2,5,7-trimethyl-3-phenylsulfanyl-1-benzofuran (268 mg, 1.0 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 82%, m.p. 393–394 K; Rf = 0.65 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.22 (s, 3H), 2.41 (s, 3H), 2.75 (s, 3H), 6.84 (d, J = 6.96 Hz, 2H), 7.43–7.51 (m, 3H), 7.67 (d, J = 6.60 Hz, 2H); EI—MS 284 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoides drawn at the 30% probability level.

Crystal data

C17H16O2S F000 = 600
Mr = 284.36 Dx = 1.281 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P_2ybc Cell parameters from 1802 reflections
a = 18.393 (2) Å θ = 3.1–24.3º
b = 6.1515 (6) Å µ = 0.22 mm1
c = 13.054 (1) Å T = 298 (2) K
β = 93.024 (2)º Block, colorless
V = 1474.9 (2) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3215 independent reflections
Radiation source: fine-focus sealed tube 1611 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.066
Detector resolution: 10.0 pixels mm-1 θmax = 27.0º
T = 298(2) K θmin = 1.1º
φ and ω scans h = −18→23
Absorption correction: none k = −6→7
8615 measured reflections l = −16→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.163   w = 1/[σ2(Fo2) + (0.0668P)2 + 0.2115P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3215 reflections Δρmax = 0.17 e Å3
184 parameters Δρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.33491 (5) 0.75793 (15) 0.41600 (7) 0.0730 (3)
O1 0.12972 (11) 0.7187 (3) 0.31945 (14) 0.0536 (5)
O2 0.34960 (15) 0.7328 (5) 0.52790 (19) 0.1133 (11)
C1 0.24341 (15) 0.6884 (5) 0.3874 (2) 0.0481 (7)
C2 0.20160 (15) 0.5094 (4) 0.42636 (19) 0.0438 (7)
C3 0.21511 (17) 0.3364 (5) 0.4936 (2) 0.0517 (7)
H3 0.2611 0.3158 0.5251 0.062*
C4 0.15868 (19) 0.1960 (5) 0.5125 (2) 0.0577 (8)
C5 0.09051 (19) 0.2308 (5) 0.4641 (2) 0.0653 (9)
H5 0.0534 0.1338 0.4775 0.078*
C6 0.07447 (16) 0.4016 (5) 0.3972 (2) 0.0571 (8)
C7 0.13246 (15) 0.5374 (4) 0.38166 (19) 0.0450 (7)
C8 0.19788 (17) 0.8067 (5) 0.3253 (2) 0.0517 (7)
C9 0.37498 (15) 0.5292 (5) 0.3559 (2) 0.0552 (8)
C10 0.36512 (17) 0.5067 (6) 0.2517 (3) 0.0727 (10)
H10 0.3375 0.6073 0.2134 0.087*
C11 0.3964 (2) 0.3347 (9) 0.2050 (3) 0.0974 (14)
H11 0.3891 0.3161 0.1345 0.117*
C12 0.4385 (2) 0.1893 (8) 0.2609 (5) 0.1024 (14)
H12 0.4588 0.0715 0.2281 0.123*
C13 0.4510 (2) 0.2152 (7) 0.3637 (4) 0.0973 (14)
H13 0.4807 0.1179 0.4009 0.117*
C14 0.41888 (19) 0.3882 (7) 0.4128 (3) 0.0779 (11)
H14 0.4270 0.4084 0.4831 0.094*
C15 0.1696 (2) 0.0106 (6) 0.5874 (3) 0.0864 (11)
H15A 0.2207 −0.0077 0.6043 0.130*
H15B 0.1503 −0.1207 0.5569 0.130*
H15C 0.1449 0.0422 0.6486 0.130*
C16 0.00061 (18) 0.4398 (7) 0.3461 (3) 0.0873 (12)
H16A −0.0161 0.5825 0.3631 0.131*
H16B −0.0329 0.3332 0.3695 0.131*
H16C 0.0035 0.4280 0.2731 0.131*
C17 0.2083 (2) 1.0024 (5) 0.2620 (2) 0.0760 (10)
H17A 0.2548 1.0662 0.2803 0.114*
H17B 0.1704 1.1056 0.2737 0.114*
H17C 0.2063 0.9624 0.1908 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0663 (6) 0.0763 (7) 0.0762 (6) −0.0265 (5) 0.0011 (4) −0.0218 (5)
O1 0.0570 (13) 0.0537 (13) 0.0496 (12) 0.0046 (10) −0.0005 (9) −0.0029 (10)
O2 0.0903 (18) 0.178 (3) 0.0700 (17) −0.0144 (18) −0.0154 (14) −0.0556 (17)
C1 0.0577 (18) 0.0457 (17) 0.0409 (16) −0.0104 (14) 0.0017 (13) −0.0058 (12)
C2 0.0541 (17) 0.0419 (16) 0.0356 (14) −0.0058 (13) 0.0054 (12) −0.0090 (12)
C3 0.067 (2) 0.0490 (17) 0.0387 (16) 0.0014 (15) 0.0030 (14) −0.0008 (13)
C4 0.082 (2) 0.0468 (19) 0.0457 (18) −0.0085 (16) 0.0177 (16) −0.0021 (13)
C5 0.073 (2) 0.061 (2) 0.064 (2) −0.0234 (18) 0.0229 (17) −0.0057 (17)
C6 0.0527 (19) 0.064 (2) 0.0554 (19) −0.0108 (16) 0.0085 (15) −0.0140 (16)
C7 0.0528 (18) 0.0443 (17) 0.0379 (15) −0.0011 (14) 0.0025 (13) −0.0060 (13)
C8 0.069 (2) 0.0433 (18) 0.0434 (16) −0.0031 (15) 0.0072 (14) −0.0056 (13)
C9 0.0415 (17) 0.072 (2) 0.0522 (18) −0.0146 (15) 0.0024 (14) 0.0029 (16)
C10 0.051 (2) 0.108 (3) 0.058 (2) 0.0070 (19) −0.0011 (16) −0.012 (2)
C11 0.061 (2) 0.144 (4) 0.088 (3) 0.006 (3) 0.006 (2) −0.033 (3)
C12 0.082 (3) 0.096 (3) 0.132 (4) −0.004 (3) 0.038 (3) −0.022 (3)
C13 0.074 (3) 0.089 (3) 0.131 (4) 0.008 (2) 0.023 (3) 0.033 (3)
C14 0.067 (2) 0.100 (3) 0.067 (2) −0.013 (2) 0.0089 (19) 0.018 (2)
C15 0.132 (3) 0.063 (2) 0.066 (2) −0.006 (2) 0.026 (2) 0.0133 (18)
C16 0.054 (2) 0.107 (3) 0.100 (3) −0.014 (2) 0.001 (2) −0.017 (2)
C17 0.112 (3) 0.052 (2) 0.065 (2) −0.0031 (19) 0.015 (2) 0.0073 (16)

Geometric parameters (Å, °)

S—O2 1.480 (3) C9—C14 1.376 (4)
S—C1 1.757 (3) C10—C11 1.364 (5)
S—C9 1.789 (3) C10—H10 0.9300
O1—C8 1.364 (3) C11—C12 1.368 (6)
O1—C7 1.379 (3) C11—H11 0.9300
C1—C8 1.347 (4) C12—C13 1.360 (6)
C1—C2 1.450 (4) C12—H12 0.9300
C2—C7 1.382 (4) C13—C14 1.390 (6)
C2—C3 1.393 (4) C13—H13 0.9300
C3—C4 1.383 (4) C14—H14 0.9300
C3—H3 0.9300 C15—H15A 0.9600
C4—C5 1.390 (5) C15—H15B 0.9600
C4—C15 1.509 (4) C15—H15C 0.9600
C5—C6 1.388 (4) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.378 (4) C16—H16C 0.9600
C6—C16 1.500 (4) C17—H17A 0.9600
C8—C17 1.479 (4) C17—H17B 0.9600
C9—C10 1.369 (4) C17—H17C 0.9600
O2—S—C1 107.90 (15) C11—C10—H10 120.5
O2—S—C9 107.03 (16) C9—C10—H10 120.5
C1—S—C9 97.32 (13) C10—C11—C12 120.6 (4)
C8—O1—C7 106.4 (2) C10—C11—H11 119.7
C8—C1—C2 107.3 (2) C12—C11—H11 119.7
C8—C1—S 123.7 (2) C13—C12—C11 120.8 (4)
C2—C1—S 129.0 (2) C13—C12—H12 119.6
C7—C2—C3 119.4 (3) C11—C12—H12 119.6
C7—C2—C1 104.5 (2) C12—C13—C14 119.4 (4)
C3—C2—C1 136.1 (3) C12—C13—H13 120.3
C4—C3—C2 118.6 (3) C14—C13—H13 120.3
C4—C3—H3 120.7 C9—C14—C13 119.0 (4)
C2—C3—H3 120.7 C9—C14—H14 120.5
C3—C4—C5 119.4 (3) C13—C14—H14 120.5
C3—C4—C15 120.8 (3) C4—C15—H15A 109.5
C5—C4—C15 119.8 (3) C4—C15—H15B 109.5
C6—C5—C4 124.0 (3) H15A—C15—H15B 109.5
C6—C5—H5 118.0 C4—C15—H15C 109.5
C4—C5—H5 118.0 H15A—C15—H15C 109.5
C7—C6—C5 114.3 (3) H15B—C15—H15C 109.5
C7—C6—C16 122.0 (3) C6—C16—H16A 109.5
C5—C6—C16 123.7 (3) C6—C16—H16B 109.5
C6—C7—O1 124.9 (3) H16A—C16—H16B 109.5
C6—C7—C2 124.4 (3) C6—C16—H16C 109.5
O1—C7—C2 110.7 (2) H16A—C16—H16C 109.5
C1—C8—O1 111.1 (2) H16B—C16—H16C 109.5
C1—C8—C17 132.9 (3) C8—C17—H17A 109.5
O1—C8—C17 115.9 (3) C8—C17—H17B 109.5
C10—C9—C14 121.1 (3) H17A—C17—H17B 109.5
C10—C9—S 118.6 (3) C8—C17—H17C 109.5
C14—C9—S 120.2 (3) H17A—C17—H17C 109.5
C11—C10—C9 119.1 (4) H17B—C17—H17C 109.5
O2—S—C1—C8 134.5 (3) C3—C2—C7—C6 −1.3 (4)
C9—S—C1—C8 −114.9 (3) C1—C2—C7—C6 179.7 (3)
O2—S—C1—C2 −42.3 (3) C3—C2—C7—O1 178.9 (2)
C9—S—C1—C2 68.3 (3) C1—C2—C7—O1 −0.1 (3)
C8—C1—C2—C7 0.5 (3) C2—C1—C8—O1 −0.6 (3)
S—C1—C2—C7 177.7 (2) S—C1—C8—O1 −178.05 (18)
C8—C1—C2—C3 −178.3 (3) C2—C1—C8—C17 −178.2 (3)
S—C1—C2—C3 −1.1 (5) S—C1—C8—C17 4.4 (5)
C7—C2—C3—C4 0.8 (4) C7—O1—C8—C1 0.6 (3)
C1—C2—C3—C4 179.4 (3) C7—O1—C8—C17 178.6 (2)
C2—C3—C4—C5 0.1 (4) O2—S—C9—C10 176.0 (2)
C2—C3—C4—C15 −177.9 (3) C1—S—C9—C10 64.7 (3)
C3—C4—C5—C6 −0.5 (5) O2—S—C9—C14 −8.4 (3)
C15—C4—C5—C6 177.5 (3) C1—S—C9—C14 −119.7 (3)
C4—C5—C6—C7 0.0 (4) C14—C9—C10—C11 3.5 (5)
C4—C5—C6—C16 −179.3 (3) S—C9—C10—C11 179.0 (3)
C5—C6—C7—O1 −179.3 (2) C9—C10—C11—C12 −1.5 (6)
C16—C6—C7—O1 0.0 (4) C10—C11—C12—C13 −1.1 (7)
C5—C6—C7—C2 0.9 (4) C11—C12—C13—C14 1.8 (6)
C16—C6—C7—C2 −179.8 (3) C10—C9—C14—C13 −2.8 (5)
C8—O1—C7—C6 180.0 (3) S—C9—C14—C13 −178.2 (3)
C8—O1—C7—C2 −0.2 (3) C12—C13—C14—C9 0.2 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2045).

References

  1. Brandenburg, K. (1998). DIAMOND Version 2.1. University of Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019302/rn2045sup1.cif

e-64-o1395-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019302/rn2045Isup2.hkl

e-64-o1395-Isup2.hkl (157.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES