Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1401. doi: 10.1107/S1600536808019338

4-Methoxy­phenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-d-mannopyran­oside

Ludovic Drouin a, Andrew R Cowley b, Antony J Fairbanks a,*, Amber L Thompson b
PMCID: PMC2962034  PMID: 21203121

Abstract

The title compound, C21H26O10S, was synthesized in a single step from mannose penta­acetate. The mol­ecular structure confirms the α configuration of the anomeric thioaryl substituent. Spectroscopic and melting-point data obtained for the title compound are in disagreement with those previously reported, indicating the previously reported synthesis [Durette & Shen (1980). Carbohydr. Res. 81, 261–274] to be erroneous. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Altomare et al. (1994); Cao et al. (1998); Cosier & Glazer (1986); Drouin et al. (2007); Durette & Shen (1980); France et al. (2004); Mootoo et al. (1988); Poh (1982); Prince (1982); Roy et al. (1992); Watkin (1994).graphic file with name e-64-o1401-scheme1.jpg

Experimental

Crystal data

  • C21H26O10S

  • M r = 470.50

  • Orthorhombic, Inline graphic

  • a = 8.6218 (2) Å

  • b = 15.2945 (3) Å

  • c = 17.5449 (3) Å

  • V = 2313.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 150 K

  • 0.44 × 0.32 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) T min = 0.94, T max = 0.96

  • 18167 measured reflections

  • 5253 independent reflections

  • 4562 reflections with I > 2.0σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 3σ(F 2)] = 0.036

  • wR(F 2) = 0.035

  • S = 1.07

  • 4305 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 2269 Friedel pairs

  • Flack parameter: −0.06 (6)

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK and Hooft et al. (2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019338/lh2646sup1.cif

e-64-o1401-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019338/lh2646Isup2.hkl

e-64-o1401-Isup2.hkl (261.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H11⋯O10i 0.98 2.40 3.248 (3) 144
C19—H191⋯O2ii 0.97 2.54 3.362 (3) 142
C21—H213⋯O6iii 0.97 2.43 3.143 (3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the EPSRC (Project Studentship GR/T24692/01 to LD) for financial support.

supplementary crystallographic information

Comment

Thioglycosides are extremely useful and versatile glycoside donors for the synthesis of oligosaccharides, which may be activated by a wide range of electrophiles and also by electrochemical methods (France et al., 2004). The nature of an aromatic substituent of an aryl thioglycoside has a strongly modulating effect on the reactivity of such a thioglycoside; strongly electron donating substituents greatly increase their reactivity towards electrophiles (Roy et al., 1992), and also decrease their oxidation potentials so that they may be electrochemically activated at relatively low externally applied potentials (Drouin et al., 2007). Such 'armed' (Mootoo et al., 1988) thioglycosides may therefore be used as donors for the glycosylation of less reactive 'disarmed' thioglycoside acceptors. The title compound was obtained in a single step from mannose penta-acetate by treatment with 4-methoxythiophenol and boron trifluoride etherate in dichloromethane (Fig. 1). Spectroscopic data obtained for this compound was in disagreement with that previously reported in the only reported synthesis (Durette et al., 1980). Moreover the anomalous optical rotation reported therein had also been highlighted in a subsequent paper (Poh, 1982). Single crystal X-ray analysis was therefore undertaken to confirm the authenticity of our material, and this indeed demonstrated the correctness of our structural assignment (Fig. 2), and in particular the α-anomeric configuration of the thioaryl group. We conclude that the previous report (Durette et al., 1980) in fact probably details the synthesis of the corresponding β-anomer, formed by an SN2 substitution reaction on the α-glycosyl bromide, which was incorrectly assigned the α-anomeric configuration by the authors.

The structure has no strong intermolecular interactions, although there are a number of weaker C—H···O interactions that lead to the formation of sheets (Fig. 3 and Table 1)

Experimental

1,2,3,4,6-Penta-O-acetyl-α,β-D-mannopyranoside (12.55 g, 32.20 mmol) and 4-methoxythiophenol (5 ml, 40.70 mmol) were suspended in anhydrous dichloromethane (240 ml) under an atmosphere of argon, and the mixture was cooled to 273K. Boron trifluoride diethyl etherate (38.6 ml, 304.60 mmol) was added dropwise, and the reaction mixture was stirred at 295K. After 22 h, t.l.c. (petroleum ether/ethyl acetate, 1:1) indicated the formation of a major product (Rf 1/2) and the complete consumption of the starting material (Rf 0.4; 1/2). The reaction was then quenched by the addition of triethylamine and the resulting mixture was partitioned between dichloromethane (240 ml) and water (240 ml). The organic extracts were washed with a saturated aqueous solution of sodium hydrogencarbonate (240 ml), a saturated aqueous solution of sodium chloride (240 ml), and were then dried over MgSO4, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate, 6:4) to give the desired 4-methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside (13.31 g, 88%) which crystallized from cyclohexane as a white crystalline solid, m.p. 335-337K (cyclohexane); a sample suitable for X-ray analysis was then re-crystallized from a solution in pentane/ethyl acetate; [α]D20 +108 (c, 1.1 in CHCl3), [α]D21 +117 (c, 1.2 in CHCl3); 1H (400 MHz, C6D6) 1.57 (3H, s, CH3CO), 1.67 (3H, s, CH3CO), 1.69 (3H, s, CH3CO), 1.70 (3H, s, CH3CO), 3.28 (3H, s, OCH3), 4.17 (1H, dd, J5,6 2.5 Hz, J6,6' 12.5 Hz, H-6), 4.42 (1H, dd, J5,6' 5.5 Hz, J6,6' 12.5 Hz, H-6'), 4.65 (1H, ddd, J4,5 8.0 Hz, J5,6 2.5 Hz, J5,6' 5.5 Hz, H-5), 5.42 (1H, brs, CH), 5.70–5.80 (2 x 1H, m, 2 x CH), 5.87 (1H, brs, CH), 6.60 (2 x 1H, dd, J 9.0 Hz, J 0.5 Hz, 2ArH), 7.34 (2 x 1H, dd, J 9.0 Hz, J 0.5 Hz, 2ArH); δH (400 MHz, CDCl3) 2.02 (3H, s, CH3CO), 2.08 (2 x 3H, s, 2 x CH3CO), 2.15 (3H, s, CH3CO), 3.80 (3H, s, OCH3), 4.12 (1H, dd, J6,6' 12.0 Hz, J5,6 2.0 Hz, H-6), 4.31 (1H, dd, J6,6' 4.0 Hz, J5,6' 6.0 Hz, H-6'), 4.58 (1H, ddd, J5,6 2.0 Hz, J5,6' 6.0 Hz, J4,5 10.0 Hz, H-5), 5.31–5.34 (3 x 1H, m, H-1, 2 x CH), 5.50 (1H, brs, CH), 6.86 (2 x 1H, dd, J 9.0 Hz, J 1.5 Hz, ArH), 7.43 (2 x 1H, dd, J 9.0 Hz, J 1.5 Hz, ArH); δC (50 MHz, CDCl3) 20.8 (CH3CO), 20.9 (2 x CH3CO), 21.0 (CH3CO), 55.5 (CH3O), 62.7 (C-6), 66.6 (CH), 69.5 (2 x CH), 70.89 (CH), 86.7 (C-1), 114.9 (2 x ArCH), 122.7 (ArC), 135.2 (2 x ArCH), 160.3 (ArC), 169.9 (C?O), 169.9 (C?O), 170.1 (C?O), 170.7 (C?O); m/z (ESI) 529.37 ([M+NH4+CH3CN]+, 100%); (HMRS (ESI) Calcd. For C21H26NaO10S (M+NH4+) 493.1139. Found 493.1127).

Refinement

A polycrystalline aggregate was divided to give a fragment having dimensions approximately 0.2 x 0.32 x 0.44 mm, which was mounted on a glass fibre using perfluoropolyether oil. The sample was cooled rapidly to 150 K in a stream of cold N2 using an Oxford Cryosystems Cryostream unit (Cosier and Glazer, 1986). Diffraction data were measured using an Bruker–Nonius KappaCCD diffractometer (graphite-monochromated Mo Kα radiation, λ = 0.71073 Å). Intensity data were processed using the DENZO-SMN package (Otwinowski and Minor, 1997).

Examination of the systematic absences of the intensity data showed the space group to be P212121 and the structure was solved using the direct-methods program SIR92 (Altomare et al., 1994), which located all ordered non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite (Betteridge et al., 2003). Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. The relatively large thermal parameters of some of the acetate carbon and carbonyl oxygen atoms (Figure 1) suggest that there may be unresolved disorder of these groups. Attempts to model this did not lead to any improvement in the agreement with the X-ray data and were abandoned.

Refinement of the Flack x parameter (Flack, 1983) gave a value of -0.063 (63) and examination of the Bijvoet Pairs gave the Hooft y parameter as -0.016 (29) (G=1.031 (59)) and giving the probability that the absolute configuration is correct as 1.000, using either a two or three-hypothesis model (Hooft et al., 2008).

The hydrogen atoms were all visible in the difference map, but were repositioned geometrically. Initially they were refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98), and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

A 3-term Chebychev polynomial weighting scheme was applied w = [1-(||Fo|-Fc||/6σ(Fo))2]2 / [0.350T0(x)+0.0808T1(x) + 0.0749]*Tn-1(x)] (Watkin, 1994, Prince, 1982) and the refinement was carried out using a 3 σ cutoff giving a total of 4305 reflections.

Figures

Fig. 1.

Fig. 1.

Synthesis of (I).

Fig. 2.

Fig. 2.

The molecular structure of 4-methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside(I) drawn with probability ellipsoids drawn at 50%.

Fig. 3.

Fig. 3.

The crystal structure of (I) viewed along the c axis. Intermolecular contacts are shown with a broken line.

Crystal data

C21H26O10S1 Dx = 1.351 Mg m3
Mr = 470.50 Melting point: not measured K
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 18167 reflections
a = 8.6218 (2) Å θ = 5–28º
b = 15.2945 (3) Å µ = 0.19 mm1
c = 17.5449 (3) Å T = 150 K
V = 2313.58 (8) Å3 Fragment, colourless
Z = 4 0.44 × 0.32 × 0.20 mm
F000 = 992

Data collection

Area diffractometer 4562 reflections with I > 2.0σ(I)
Monochromator: graphite Rint = 0.033
T = 150 K θmax = 27.5º
ω scans θmin = 5.2º
Absorption correction: multi-scanDENZO/SCALEPACK (Otwinowski & Minor, 1997) h = −11→11
Tmin = 0.94, Tmax = 0.96 k = −19→19
18167 measured reflections l = −22→22
5253 independent reflections

Refinement

Refinement on F H-atom parameters constrained
Least-squares matrix: full   Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.350 0.808E-01 0.749E-01
R[F2 > 2σ(F2)] = 0.036 (Δ/σ)max = 0.001
wR(F2) = 0.035 Δρmax = 0.27 e Å3
S = 1.07 Δρmin = −0.26 e Å3
4305 reflections Extinction correction: None
290 parameters Absolute structure: Flack (1983), 2269 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (6)
Hydrogen site location: inferred from neighbouring sites

Special details

Refinement. The hydrogen atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89, N—H to 0.86, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.42086 (19) 0.44662 (10) 0.48435 (10) 0.0278
C2 0.4623 (2) 0.51157 (10) 0.54678 (9) 0.0290
C3 0.3411 (2) 0.51009 (11) 0.60972 (9) 0.0293
C4 0.1802 (2) 0.52268 (11) 0.57752 (9) 0.0272
C5 0.15111 (19) 0.45186 (11) 0.51798 (10) 0.0276
C6 −0.0057 (2) 0.45811 (11) 0.48018 (11) 0.0333
O1 0.26620 (14) 0.45701 (8) 0.45874 (7) 0.0279
S1 0.46552 (6) 0.33607 (3) 0.51937 (3) 0.0339
C7 0.4854 (2) 0.27972 (11) 0.43134 (10) 0.0306
C8 0.3607 (2) 0.23433 (13) 0.40015 (12) 0.0390
C9 0.3778 (2) 0.19047 (13) 0.33162 (13) 0.0415
C10 0.5189 (2) 0.19112 (11) 0.29336 (10) 0.0336
C11 0.6441 (2) 0.23463 (12) 0.32488 (10) 0.0329
C12 0.6267 (2) 0.27925 (12) 0.39370 (11) 0.0317
O2 0.52304 (19) 0.14679 (9) 0.22609 (8) 0.0434
C13 0.6652 (3) 0.14715 (16) 0.18392 (12) 0.0527
O3 0.46128 (15) 0.59743 (7) 0.51222 (7) 0.0317
C14 0.5794 (2) 0.65171 (13) 0.52960 (12) 0.0401
O4 0.6831 (2) 0.63201 (11) 0.57186 (12) 0.0741
C15 0.5639 (3) 0.73699 (13) 0.48905 (13) 0.0471
O5 0.36891 (17) 0.58054 (9) 0.66273 (7) 0.0383
C16 0.4478 (3) 0.56208 (15) 0.72635 (11) 0.0448
O6 0.5010 (3) 0.49096 (12) 0.73892 (11) 0.0767
C17 0.4616 (4) 0.6411 (2) 0.77608 (14) 0.0696
O7 0.06770 (15) 0.50827 (8) 0.63709 (7) 0.0334
C18 0.0046 (2) 0.58014 (12) 0.67193 (10) 0.0374
O8 0.04098 (19) 0.65349 (8) 0.65627 (8) 0.0466
C19 −0.1121 (3) 0.55302 (15) 0.72963 (15) 0.0595
O9 −0.01388 (15) 0.54017 (8) 0.43982 (7) 0.0341
C20 −0.1484 (2) 0.55419 (14) 0.40247 (11) 0.0378
O10 −0.25415 (18) 0.50261 (13) 0.40449 (10) 0.0578
C21 −0.1459 (3) 0.63787 (15) 0.35898 (12) 0.0476
H11 0.4895 0.4569 0.4405 0.0329*
H21 0.5668 0.4991 0.5672 0.0352*
H31 0.3454 0.4533 0.6367 0.0357*
H41 0.1694 0.5812 0.5567 0.0321*
H51 0.1563 0.3935 0.5428 0.0332*
H61 −0.0883 0.4553 0.5182 0.0412*
H62 −0.0189 0.4084 0.4439 0.0426*
H81 0.2625 0.2331 0.4264 0.0476*
H91 0.2901 0.1590 0.3105 0.0504*
H111 0.7447 0.2344 0.2983 0.0390*
H121 0.7146 0.3117 0.4155 0.0391*
H131 0.6468 0.1130 0.1371 0.0801*
H132 0.7494 0.1231 0.2157 0.0787*
H133 0.6895 0.2084 0.1693 0.0802*
H152 0.6314 0.7806 0.5124 0.0710*
H151 0.4574 0.7570 0.4924 0.0705*
H153 0.5884 0.7284 0.4351 0.0710*
H172 0.5416 0.6301 0.8131 0.1035*
H171 0.3633 0.6515 0.7991 0.1058*
H173 0.4931 0.6909 0.7446 0.1044*
H192 −0.1471 0.6041 0.7564 0.0883*
H191 −0.0655 0.5113 0.7647 0.0876*
H193 −0.2004 0.5241 0.7047 0.0882*
H212 −0.2487 0.6498 0.3385 0.0716*
H211 −0.1161 0.6835 0.3930 0.0723*
H213 −0.0724 0.6340 0.3170 0.0725*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0262 (8) 0.0281 (8) 0.0291 (8) 0.0025 (6) 0.0019 (7) 0.0036 (7)
C2 0.0285 (8) 0.0272 (8) 0.0312 (8) 0.0019 (7) −0.0038 (8) 0.0055 (6)
C3 0.0376 (9) 0.0248 (8) 0.0256 (8) 0.0018 (7) −0.0030 (7) 0.0019 (6)
C4 0.0311 (9) 0.0255 (8) 0.0250 (8) 0.0008 (7) 0.0039 (7) 0.0025 (6)
C5 0.0281 (8) 0.0269 (8) 0.0277 (8) −0.0001 (6) 0.0036 (7) 0.0005 (7)
C6 0.0315 (9) 0.0336 (8) 0.0349 (8) −0.0036 (7) −0.0019 (8) 0.0011 (8)
O1 0.0282 (6) 0.0299 (6) 0.0258 (6) 0.0020 (5) 0.0010 (5) 0.0012 (5)
S1 0.0391 (2) 0.03005 (19) 0.0327 (2) 0.00833 (19) 0.0037 (2) 0.00485 (18)
C7 0.0322 (9) 0.0244 (7) 0.0352 (9) 0.0038 (7) −0.0009 (8) 0.0044 (6)
C8 0.0267 (9) 0.0412 (10) 0.0492 (11) 0.0006 (8) 0.0011 (8) 0.0039 (9)
C9 0.0348 (10) 0.0409 (10) 0.0488 (11) −0.0048 (8) −0.0094 (9) −0.0022 (9)
C10 0.0397 (10) 0.0271 (8) 0.0342 (9) 0.0012 (8) −0.0072 (8) 0.0003 (7)
C11 0.0325 (9) 0.0310 (9) 0.0354 (9) −0.0011 (7) 0.0044 (8) 0.0002 (7)
C12 0.0310 (9) 0.0275 (8) 0.0367 (9) −0.0022 (7) −0.0006 (8) 0.0023 (7)
O2 0.0544 (9) 0.0377 (7) 0.0380 (7) 0.0002 (7) −0.0072 (7) −0.0076 (6)
C13 0.0666 (15) 0.0549 (13) 0.0365 (11) 0.0092 (12) −0.0010 (11) −0.0083 (10)
O3 0.0334 (6) 0.0279 (6) 0.0338 (6) −0.0016 (5) −0.0016 (6) 0.0066 (5)
C14 0.0412 (10) 0.0334 (9) 0.0457 (11) −0.0063 (8) −0.0018 (9) −0.0007 (8)
O4 0.0709 (12) 0.0497 (10) 0.1018 (15) −0.0241 (9) −0.0468 (12) 0.0199 (10)
C15 0.0560 (13) 0.0304 (9) 0.0549 (12) −0.0044 (9) 0.0132 (11) 0.0037 (9)
O5 0.0513 (8) 0.0370 (7) 0.0266 (6) 0.0028 (6) −0.0104 (6) −0.0042 (5)
C16 0.0469 (12) 0.0581 (13) 0.0293 (9) −0.0087 (10) −0.0104 (9) 0.0065 (9)
O6 0.1008 (16) 0.0624 (11) 0.0669 (11) −0.0045 (11) −0.0511 (12) 0.0164 (9)
C17 0.0801 (19) 0.0841 (18) 0.0445 (12) −0.0086 (16) −0.0198 (14) −0.0186 (12)
O7 0.0412 (7) 0.0274 (6) 0.0316 (6) 0.0034 (5) 0.0126 (5) −0.0009 (5)
C18 0.0477 (11) 0.0303 (9) 0.0341 (9) 0.0071 (8) 0.0074 (9) −0.0021 (7)
O8 0.0655 (10) 0.0284 (6) 0.0460 (8) 0.0065 (7) 0.0131 (8) 0.0003 (6)
C19 0.0782 (17) 0.0413 (12) 0.0591 (14) 0.0126 (12) 0.0369 (14) 0.0011 (10)
O9 0.0268 (6) 0.0367 (6) 0.0387 (7) 0.0021 (5) −0.0064 (5) 0.0006 (5)
C20 0.0249 (9) 0.0564 (12) 0.0321 (9) 0.0068 (9) −0.0045 (8) −0.0100 (8)
O10 0.0281 (7) 0.0905 (13) 0.0547 (10) −0.0112 (7) −0.0078 (7) 0.0022 (9)
C21 0.0476 (12) 0.0529 (13) 0.0423 (11) 0.0190 (10) −0.0134 (10) −0.0079 (9)

Geometric parameters (Å, °)

C1—C2 1.521 (2) C12—H121 0.984
C1—O1 1.416 (2) O2—C13 1.432 (3)
C1—S1 1.8398 (16) C13—H131 0.985
C1—H11 0.984 C13—H132 0.987
C2—C3 1.520 (2) C13—H133 0.994
C2—O3 1.4464 (18) O3—C14 1.349 (2)
C2—H21 0.988 C14—O4 1.200 (3)
C3—C4 1.511 (2) C14—C15 1.492 (3)
C3—O5 1.443 (2) C15—H152 0.975
C3—H31 0.990 C15—H151 0.970
C4—C5 1.525 (2) C15—H153 0.978
C4—O7 1.443 (2) O5—C16 1.337 (2)
C4—H41 0.972 C16—O6 1.201 (3)
C5—C6 1.509 (2) C16—C17 1.496 (3)
C5—O1 1.439 (2) C17—H172 0.962
C5—H51 0.995 C17—H171 0.952
C6—O9 1.443 (2) C17—H173 0.980
C6—H61 0.977 O7—C18 1.370 (2)
C6—H62 0.998 C18—O8 1.197 (2)
S1—C7 1.7770 (18) C18—C19 1.486 (3)
C7—C8 1.392 (3) C19—H192 0.961
C7—C12 1.385 (3) C19—H191 0.973
C8—C9 1.385 (3) C19—H193 0.983
C8—H81 0.965 O9—C20 1.350 (2)
C9—C10 1.390 (3) C20—O10 1.206 (3)
C9—H91 0.969 C20—C21 1.490 (3)
C10—C11 1.384 (3) C21—H212 0.973
C10—O2 1.362 (2) C21—H211 0.953
C11—C12 1.395 (3) C21—H213 0.974
C11—H111 0.984
C2—C1—O1 112.11 (13) C12—C11—H111 120.4
C2—C1—S1 108.09 (12) C11—C12—C7 120.66 (17)
O1—C1—S1 113.96 (11) C11—C12—H121 120.0
C2—C1—H11 108.5 C7—C12—H121 119.3
O1—C1—H11 107.4 C10—O2—C13 117.93 (17)
S1—C1—H11 106.4 O2—C13—H131 106.9
C1—C2—C3 110.61 (14) O2—C13—H132 109.7
C1—C2—O3 106.83 (13) H131—C13—H132 113.0
C3—C2—O3 108.29 (13) O2—C13—H133 108.5
C1—C2—H21 110.4 H131—C13—H133 108.5
C3—C2—H21 111.1 H132—C13—H133 110.1
O3—C2—H21 109.4 C2—O3—C14 117.36 (14)
C2—C3—C4 110.96 (14) O3—C14—O4 123.21 (18)
C2—C3—O5 110.06 (14) O3—C14—C15 111.29 (17)
C4—C3—O5 107.35 (14) O4—C14—C15 125.49 (19)
C2—C3—H31 109.6 C14—C15—H152 110.1
C4—C3—H31 108.9 C14—C15—H151 109.4
O5—C3—H31 109.9 H152—C15—H151 108.9
C3—C4—C5 108.45 (13) C14—C15—H153 109.0
C3—C4—O7 109.09 (13) H152—C15—H153 111.7
C5—C4—O7 106.10 (13) H151—C15—H153 107.8
C3—C4—H41 110.2 C3—O5—C16 117.69 (15)
C5—C4—H41 112.4 O5—C16—O6 122.6 (2)
O7—C4—H41 110.4 O5—C16—C17 110.9 (2)
C4—C5—C6 113.78 (14) O6—C16—C17 126.5 (2)
C4—C5—O1 110.03 (13) C16—C17—H172 108.0
C6—C5—O1 107.28 (14) C16—C17—H171 108.1
C4—C5—H51 109.3 H172—C17—H171 112.4
C6—C5—H51 106.9 C16—C17—H173 108.7
O1—C5—H51 109.5 H172—C17—H173 108.6
C5—C6—O9 108.34 (13) H171—C17—H173 110.9
C5—C6—H61 110.6 C4—O7—C18 117.88 (13)
O9—C6—H61 109.7 O7—C18—O8 123.04 (17)
C5—C6—H62 109.5 O7—C18—C19 110.42 (16)
O9—C6—H62 110.1 O8—C18—C19 126.54 (18)
H61—C6—H62 108.6 C18—C19—H192 108.6
C5—O1—C1 114.46 (13) C18—C19—H191 109.5
C1—S1—C7 100.12 (8) H192—C19—H191 110.7
S1—C7—C8 120.59 (14) C18—C19—H193 110.3
S1—C7—C12 120.12 (14) H192—C19—H193 109.9
C8—C7—C12 119.28 (17) H191—C19—H193 107.8
C7—C8—C9 120.06 (18) C6—O9—C20 114.75 (14)
C7—C8—H81 120.0 O9—C20—O10 122.1 (2)
C9—C8—H81 119.9 O9—C20—C21 111.87 (17)
C8—C9—C10 120.60 (18) O10—C20—C21 126.01 (19)
C8—C9—H91 119.3 C20—C21—H212 109.7
C10—C9—H91 120.1 C20—C21—H211 108.2
C9—C10—C11 119.57 (17) H212—C21—H211 109.9
C9—C10—O2 115.99 (17) C20—C21—H213 110.2
C11—C10—O2 124.43 (18) H212—C21—H213 108.9
C10—C11—C12 119.80 (18) H211—C21—H213 110.0
C10—C11—H111 119.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H11···O10i 0.98 2.40 3.248 (3) 144
C19—H191···O2ii 0.97 2.54 3.362 (3) 142
C21—H213···O6iii 0.97 2.43 3.143 (3) 130

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2646).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Cao, S., Hernández-Matéo, F. & Roy, R. (1998). J. Carbohydr. Chem.17, 609–631.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Drouin, L., Compton, R. G., Fietkau, N. & Fairbanks, A. J. (2007). Synlett, pp.2711–2717.
  6. Durette, P. L. & Shen, T. Y. (1980). Carbohydr. Res.81, 261–274. [DOI] [PubMed]
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. France, R. R., Compton, R. G., Davis, B. G., Fairbanks, A. J., Rees, N. V. & Wadhawan, J. D. (2004). Org. Biomol. Chem.2, 2195–2202. [DOI] [PubMed]
  9. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [DOI] [PMC free article] [PubMed]
  10. Mootoo, D. R., Konradsson, P., Udodong, U. & Fraser-Reid, B. (1988). J. Am. Chem. Soc.110, 5583–5584.
  11. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Poh, B.-L. (1982). Carbohydr. Res.111, 163–169.
  14. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, p. 104. New York: Springer-Verlag.
  15. Roy, R., Andersson, F. O. & Letellier, M. (1992). Tetrahedron Lett.33, 6053–6056.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Watkin, D. (1994). Acta Cryst. A50, 411–437.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019338/lh2646sup1.cif

e-64-o1401-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019338/lh2646Isup2.hkl

e-64-o1401-Isup2.hkl (261.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES