Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1404. doi: 10.1107/S1600536808019417

N-[(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)carbon­yl]-N′-(4-hydroxy­phen­yl)thio­urea

Haitang Du a,*, Haijun Du b, Ying An c, Shengnan Li c
PMCID: PMC2962037  PMID: 21203124

Abstract

In the title compound, C18H15ClN4O2S, the pyrazole ring makes dihedral angles of 67.4 (1) and 12.5 (1)° with the phenyl and 4-hydroxy­phenyl groups, respectively; the two benzene rings are twisted by 60.1 (1)° with respect to each other. The thio­urea NH groups are involved in N—H⋯O and N—H⋯Cl intra­molecular hydrogen bonds. A hydrogen bond between the phenolic OH group and the pyrazole N atom connects mol­ecules into a one-dimensional polymeric structure.

Related literature

For related literature, see: Du et al. (2007); Saeed & Flörke (2007); Wang et al. (2007).graphic file with name e-64-o1404-scheme1.jpg

Experimental

Crystal data

  • C18H15ClN4O2S

  • M r = 386.85

  • Triclinic, Inline graphic

  • a = 8.572 (2) Å

  • b = 10.429 (2) Å

  • c = 11.170 (2) Å

  • α = 99.936 (4)°

  • β = 105.817 (4)°

  • γ = 106.042 (4)°

  • V = 889.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 294 (2) K

  • 0.26 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.914, T max = 0.933

  • 4615 measured reflections

  • 3118 independent reflections

  • 2160 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.122

  • S = 1.04

  • 3118 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019417/gk2153sup1.cif

e-64-o1404-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019417/gk2153Isup2.hkl

e-64-o1404-Isup2.hkl (153KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 2.15 2.938 (3) 162
N3—H3A⋯Cl1 0.891 (10) 2.422 (19) 3.168 (2) 141 (2)
N4—H4A⋯O1 0.901 (10) 1.92 (2) 2.661 (3) 139 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Guiyang College (project No. 2008012) for financial support.

supplementary crystallographic information

Comment

The title compound is similar to the previously reported N-(5-chloro-3-methyl-1-phenylpyrazole-4-ylcarbonyl)-N'- (4-methphenyl)thiourea (Du et al., 2007). The molecular structure of the title compound and the atom-numbering scheme are shown in Fig.1. The pyrazole ring makes dihedral angles of 67.4 (1) and 12.5 (1)°, with the C1—C6 and C13—C18 rings, respectively. These two six-membered rings are twisted by 60.1 (1)° with respect to each other. This geometry is stabilized by intramolecular N4-H4A ···O1 and N3-H3A···Cl hydrogen bonds (Fig.1, Table 1). In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds to form a one-dimensional polymeric structure (Fig.2). All bond lengths and angles are in the normal range (Du et al., 2007; Saeed & Flörke, 2007; Wang et al., 2007).

Experimental

Powdered ammonium thiocyanate (15 mmol), 5-chloro-3-methyl-1-phenyl-pyrazole-4-carbonyl chloride (10 mmol), PEG-400 (0.5 mL) and acetone (25 mL) were placed in a dried round-bottom flask and stirred at room temperature for 1 h, then 4-aminophenol (9.5 mmol) was added, and the mixture was stirred for 5 h. The mixture was poured into water (20 mL). The resulting solid was filtered, dried and recrystallized from N,N-dimethylformamide/ethanol to give the title compound. Single crystals were obtained by slow evaporation of a solution in N,N-dimethylformamide/ethanol (1:1, v/v).

Refinement

H atoms bonded to N atoms were located in a difference Fourier map and refined with distance restraints (N—H = 0.89 Å) and with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and O–H = 0.82 Å;, Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl groups and 1.2 for the remaining atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme, showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

The polymeric structure via O-H···N hydrogen bonds. Hydrogen bonds are shown with dashed lines.

Crystal data

C18H15ClN4O2S Z = 2
Mr = 386.85 F000 = 400
Triclinic, P1 Dx = 1.444 Mg m3
Hall symbol: -P 1 Melting point: 456 K
a = 8.572 (2) Å Mo Kα radiation λ = 0.71073 Å
b = 10.429 (2) Å Cell parameters from 1626 reflections
c = 11.170 (2) Å θ = 2.6–25.0º
α = 99.936 (4)º µ = 0.35 mm1
β = 105.817 (4)º T = 294 (2) K
γ = 106.042 (4)º Prism, colorless
V = 889.5 (3) Å3 0.26 × 0.24 × 0.20 mm

Data collection

Bruker SMART 1K CCD diffractometer 3118 independent reflections
Radiation source: fine-focus sealed tube 2160 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.025
T = 294(2) K θmax = 25.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −10→7
Tmin = 0.914, Tmax = 0.933 k = −12→12
4615 measured reflections l = −10→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0911P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3118 reflections Δρmax = 0.20 e Å3
245 parameters Δρmin = −0.35 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.12809 (11) 0.51284 (7) 0.87995 (7) 0.0638 (3)
S1 0.24176 (14) 0.24348 (8) 0.57180 (8) 0.0743 (3)
O1 0.2267 (3) 0.66532 (18) 0.52727 (17) 0.0588 (6)
O2 0.4029 (3) 0.19520 (19) 0.00036 (17) 0.0553 (5)
H2 0.3689 0.1104 −0.0168 0.083*
N1 0.1986 (3) 0.78380 (19) 0.93012 (18) 0.0391 (5)
N2 0.2336 (3) 0.8960 (2) 0.88065 (18) 0.0419 (5)
N3 0.2115 (3) 0.4873 (2) 0.6192 (2) 0.0462 (6)
N4 0.2649 (3) 0.4289 (2) 0.43005 (19) 0.0441 (5)
C1 0.1829 (3) 0.7990 (2) 1.0561 (2) 0.0380 (6)
C2 0.3043 (4) 0.7804 (3) 1.1543 (2) 0.0464 (7)
H2A 0.3950 0.7556 1.1394 0.056*
C3 0.2892 (4) 0.7994 (3) 1.2762 (3) 0.0533 (7)
H3 0.3708 0.7883 1.3442 0.064*
C4 0.1535 (4) 0.8345 (3) 1.2966 (3) 0.0582 (8)
H4 0.1431 0.8462 1.3782 0.070*
C5 0.0335 (4) 0.8525 (3) 1.1974 (3) 0.0622 (8)
H5 −0.0579 0.8763 1.2119 0.075*
C6 0.0477 (4) 0.8354 (3) 1.0758 (3) 0.0506 (7)
H6 −0.0329 0.8483 1.0084 0.061*
C7 0.2683 (4) 0.9426 (3) 0.6808 (2) 0.0564 (8)
H7A 0.2970 1.0362 0.7298 0.085*
H7B 0.1667 0.9190 0.6068 0.085*
H7C 0.3624 0.9343 0.6529 0.085*
C8 0.2354 (3) 0.8466 (2) 0.7635 (2) 0.0384 (6)
C9 0.2041 (3) 0.7020 (2) 0.7349 (2) 0.0362 (6)
C10 0.1803 (3) 0.6678 (2) 0.8446 (2) 0.0391 (6)
C11 0.2136 (3) 0.6184 (2) 0.6186 (2) 0.0388 (6)
C12 0.2401 (3) 0.3889 (3) 0.5323 (2) 0.0429 (6)
C13 0.3013 (3) 0.3615 (2) 0.3244 (2) 0.0395 (6)
C14 0.3412 (4) 0.4386 (3) 0.2413 (2) 0.0490 (7)
H14 0.3439 0.5298 0.2574 0.059*
C15 0.3771 (4) 0.3835 (3) 0.1354 (3) 0.0522 (7)
H15 0.4046 0.4376 0.0810 0.063*
C16 0.3726 (3) 0.2478 (3) 0.1094 (2) 0.0415 (6)
C17 0.3379 (4) 0.1723 (3) 0.1931 (2) 0.0504 (7)
H17 0.3389 0.0821 0.1780 0.061*
C18 0.3012 (4) 0.2268 (3) 0.2999 (3) 0.0535 (8)
H18 0.2765 0.1730 0.3551 0.064*
H3A 0.205 (4) 0.459 (3) 0.6890 (18) 0.066 (9)*
H4A 0.260 (4) 0.5134 (15) 0.426 (3) 0.064 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1074 (7) 0.0351 (4) 0.0593 (5) 0.0189 (4) 0.0486 (4) 0.0147 (3)
S1 0.1377 (9) 0.0495 (5) 0.0739 (6) 0.0502 (5) 0.0681 (6) 0.0290 (4)
O1 0.1072 (17) 0.0502 (11) 0.0377 (10) 0.0421 (12) 0.0355 (11) 0.0157 (9)
O2 0.0702 (14) 0.0514 (11) 0.0490 (11) 0.0212 (11) 0.0335 (10) 0.0029 (9)
N1 0.0546 (14) 0.0326 (11) 0.0314 (11) 0.0138 (10) 0.0196 (10) 0.0054 (9)
N2 0.0624 (15) 0.0350 (11) 0.0338 (11) 0.0189 (10) 0.0223 (10) 0.0096 (9)
N3 0.0740 (17) 0.0357 (12) 0.0405 (13) 0.0245 (11) 0.0317 (12) 0.0098 (10)
N4 0.0695 (16) 0.0334 (12) 0.0375 (12) 0.0248 (11) 0.0240 (11) 0.0082 (10)
C1 0.0495 (17) 0.0319 (13) 0.0332 (13) 0.0127 (12) 0.0187 (12) 0.0046 (10)
C2 0.0603 (19) 0.0426 (15) 0.0458 (16) 0.0244 (14) 0.0247 (14) 0.0135 (12)
C3 0.076 (2) 0.0499 (16) 0.0380 (15) 0.0244 (15) 0.0209 (14) 0.0154 (12)
C4 0.085 (2) 0.0532 (17) 0.0442 (17) 0.0223 (17) 0.0366 (17) 0.0110 (14)
C5 0.068 (2) 0.075 (2) 0.0599 (19) 0.0313 (17) 0.0414 (17) 0.0162 (16)
C6 0.0510 (18) 0.0583 (18) 0.0478 (16) 0.0229 (14) 0.0205 (13) 0.0142 (13)
C7 0.095 (2) 0.0413 (15) 0.0418 (15) 0.0289 (16) 0.0298 (16) 0.0146 (12)
C8 0.0502 (16) 0.0359 (13) 0.0311 (13) 0.0182 (12) 0.0142 (11) 0.0080 (11)
C9 0.0457 (16) 0.0332 (13) 0.0305 (12) 0.0154 (11) 0.0135 (11) 0.0062 (10)
C10 0.0493 (16) 0.0330 (13) 0.0366 (14) 0.0150 (12) 0.0175 (12) 0.0067 (11)
C11 0.0460 (16) 0.0373 (14) 0.0324 (13) 0.0164 (12) 0.0124 (11) 0.0054 (11)
C12 0.0509 (17) 0.0373 (14) 0.0398 (14) 0.0156 (12) 0.0183 (12) 0.0032 (11)
C13 0.0491 (16) 0.0352 (13) 0.0339 (13) 0.0164 (12) 0.0154 (12) 0.0028 (11)
C14 0.071 (2) 0.0328 (13) 0.0509 (16) 0.0221 (14) 0.0291 (15) 0.0094 (12)
C15 0.071 (2) 0.0446 (16) 0.0491 (16) 0.0214 (14) 0.0310 (15) 0.0135 (13)
C16 0.0436 (16) 0.0398 (14) 0.0379 (14) 0.0141 (12) 0.0155 (12) −0.0001 (11)
C17 0.076 (2) 0.0356 (14) 0.0448 (15) 0.0237 (14) 0.0276 (14) 0.0049 (12)
C18 0.088 (2) 0.0389 (15) 0.0445 (16) 0.0248 (15) 0.0351 (15) 0.0126 (12)

Geometric parameters (Å, °)

Cl1—C10 1.698 (2) C4—H4 0.9300
S1—C12 1.654 (3) C5—C6 1.382 (4)
O1—C11 1.224 (3) C5—H5 0.9300
O2—C16 1.369 (3) C6—H6 0.9300
O2—H2 0.8200 C7—C8 1.496 (3)
N1—C10 1.347 (3) C7—H7A 0.9600
N1—N2 1.373 (3) C7—H7B 0.9600
N1—C1 1.436 (3) C7—H7C 0.9600
N2—C8 1.327 (3) C8—C9 1.419 (3)
N3—C11 1.363 (3) C9—C10 1.384 (3)
N3—C12 1.407 (3) C9—C11 1.470 (3)
N3—H3A 0.891 (10) C13—C14 1.380 (3)
N4—C12 1.331 (3) C13—C18 1.384 (3)
N4—C13 1.421 (3) C14—C15 1.374 (3)
N4—H4A 0.901 (10) C14—H14 0.9300
C1—C6 1.374 (4) C15—C16 1.382 (3)
C1—C2 1.374 (4) C15—H15 0.9300
C2—C3 1.389 (4) C16—C17 1.363 (4)
C2—H2A 0.9300 C17—C18 1.384 (3)
C3—C4 1.375 (4) C17—H17 0.9300
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.371 (4)
C16—O2—H2 109.5 H7B—C7—H7C 109.5
C10—N1—N2 110.66 (18) N2—C8—C9 111.7 (2)
C10—N1—C1 128.6 (2) N2—C8—C7 119.6 (2)
N2—N1—C1 120.68 (17) C9—C8—C7 128.7 (2)
C8—N2—N1 105.50 (18) C10—C9—C8 103.6 (2)
C11—N3—C12 130.5 (2) C10—C9—C11 130.9 (2)
C11—N3—H3A 118.6 (19) C8—C9—C11 125.2 (2)
C12—N3—H3A 110.4 (19) N1—C10—C9 108.6 (2)
C12—N4—C13 130.9 (2) N1—C10—Cl1 120.04 (18)
C12—N4—H4A 115.9 (18) C9—C10—Cl1 131.33 (19)
C13—N4—H4A 113.2 (18) O1—C11—N3 121.8 (2)
C6—C1—C2 121.7 (2) O1—C11—C9 121.6 (2)
C6—C1—N1 118.6 (2) N3—C11—C9 116.6 (2)
C2—C1—N1 119.7 (2) N4—C12—N3 114.1 (2)
C1—C2—C3 118.7 (3) N4—C12—S1 129.42 (19)
C1—C2—H2A 120.6 N3—C12—S1 116.46 (19)
C3—C2—H2A 120.6 C14—C13—C18 118.3 (2)
C4—C3—C2 120.1 (3) C14—C13—N4 116.5 (2)
C4—C3—H3 120.0 C18—C13—N4 125.3 (2)
C2—C3—H3 120.0 C15—C14—C13 121.4 (2)
C5—C4—C3 120.4 (3) C15—C14—H14 119.3
C5—C4—H4 119.8 C13—C14—H14 119.3
C3—C4—H4 119.8 C14—C15—C16 120.1 (2)
C4—C5—C6 120.3 (3) C14—C15—H15 119.9
C4—C5—H5 119.9 C16—C15—H15 119.9
C6—C5—H5 119.9 C17—C16—O2 122.9 (2)
C1—C6—C5 118.9 (3) C17—C16—C15 118.7 (2)
C1—C6—H6 120.5 O2—C16—C15 118.3 (2)
C5—C6—H6 120.5 C16—C17—C18 121.6 (2)
C8—C7—H7A 109.5 C16—C17—H17 119.2
C8—C7—H7B 109.5 C18—C17—H17 119.2
H7A—C7—H7B 109.5 C13—C18—C17 119.9 (2)
C8—C7—H7C 109.5 C13—C18—H18 120.1
H7A—C7—H7C 109.5 C17—C18—H18 120.1
C10—N1—N2—C8 0.3 (3) C11—C9—C10—N1 173.8 (3)
C1—N1—N2—C8 −178.5 (2) C8—C9—C10—Cl1 176.7 (2)
C10—N1—C1—C6 −112.6 (3) C11—C9—C10—Cl1 −8.8 (4)
N2—N1—C1—C6 66.0 (3) C12—N3—C11—O1 7.4 (4)
C10—N1—C1—C2 69.0 (3) C12—N3—C11—C9 −171.0 (3)
N2—N1—C1—C2 −112.5 (3) C10—C9—C11—O1 176.2 (3)
C6—C1—C2—C3 −0.1 (4) C8—C9—C11—O1 −10.4 (4)
N1—C1—C2—C3 178.2 (2) C10—C9—C11—N3 −5.4 (4)
C1—C2—C3—C4 0.7 (4) C8—C9—C11—N3 168.0 (2)
C2—C3—C4—C5 −0.7 (4) C13—N4—C12—N3 178.3 (2)
C3—C4—C5—C6 0.0 (5) C13—N4—C12—S1 −0.5 (4)
C2—C1—C6—C5 −0.5 (4) C11—N3—C12—N4 −3.7 (4)
N1—C1—C6—C5 −178.9 (2) C11—N3—C12—S1 175.3 (2)
C4—C5—C6—C1 0.6 (4) C12—N4—C13—C14 −172.2 (3)
N1—N2—C8—C9 −0.8 (3) C12—N4—C13—C18 7.1 (4)
N1—N2—C8—C7 179.3 (2) C18—C13—C14—C15 1.2 (4)
N2—C8—C9—C10 1.0 (3) N4—C13—C14—C15 −179.4 (3)
C7—C8—C9—C10 −179.2 (3) C13—C14—C15—C16 0.5 (4)
N2—C8—C9—C11 −174.0 (2) C14—C15—C16—C17 −2.2 (4)
C7—C8—C9—C11 5.9 (4) C14—C15—C16—O2 177.6 (3)
N2—N1—C10—C9 0.3 (3) O2—C16—C17—C18 −177.5 (3)
C1—N1—C10—C9 179.0 (2) C15—C16—C17—C18 2.4 (4)
N2—N1—C10—Cl1 −177.47 (17) C14—C13—C18—C17 −1.0 (4)
C1—N1—C10—Cl1 1.2 (4) N4—C13—C18—C17 179.6 (3)
C8—C9—C10—N1 −0.7 (3) C16—C17—C18—C13 −0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N2i 0.82 2.15 2.938 (3) 162
N3—H3A···Cl1 0.891 (10) 2.422 (19) 3.168 (2) 141 (2)
N4—H4A···O1 0.901 (10) 1.92 (2) 2.661 (3) 139 (2)

Symmetry codes: (i) x, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2153).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Du, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.
  3. Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019417/gk2153sup1.cif

e-64-o1404-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019417/gk2153Isup2.hkl

e-64-o1404-Isup2.hkl (153KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES