Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1411–o1412. doi: 10.1107/S1600536808020023

2-[(E)-(5-Amino-2,3-diphenyl­quinoxalin-6-yl)imino­meth­yl]-4-chloro­phenol

Hoong-Kun Fun a,*, Reza Kia a,, Paul R Raithby b,§
PMCID: PMC2962046  PMID: 21203131

Abstract

The title Schiff base compound, C27H19ClN4O, features two intra­molecular O—H⋯N and N—H⋯N hydrogen bonds involving the hydr­oxy and amino groups to generate S(6) and S(5) ring motifs, respectively. In the crystal structure, weak inter­molecular N—H⋯O and C—H⋯N inter­actions, together with π–π contacts [centroid–centroid distances = 3.6294 (11)–3.6881 (11) Å], link neighboring mol­ecules.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Corden et al. (1996); Fun et al. (2008); Govindasamy et al. (1999). For applications and bioactivities, see: Anderson et al. (1997); Cohen & Schmidt (1964); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000); Unaleroglu & Hökelek (2002).graphic file with name e-64-o1411-scheme1.jpg

Experimental

Crystal data

  • C27H19ClN4O

  • M r = 450.91

  • Monoclinic, Inline graphic

  • a = 22.8728 (11) Å

  • b = 7.3068 (4) Å

  • c = 12.5632 (6) Å

  • β = 92.037 (2)°

  • V = 2098.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100.0 (1) K

  • 0.55 × 0.09 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.843, T max = 0.985

  • 25593 measured reflections

  • 6180 independent reflections

  • 4118 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.159

  • S = 1.01

  • 6180 reflections

  • 310 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020023/tk2279sup1.cif

e-64-o1411-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020023/tk2279Isup2.hkl

e-64-o1411-Isup2.hkl (302.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.93 (3) 1.72 (3) 2.584 (2) 153 (2)
N4—H1N4⋯O1i 1.01 (3) 2.47 (3) 3.099 (2) 120.4 (18)
N4—H2N4⋯N2 1.04 (3) 2.31 (3) 2.750 (2) 104.3 (17)
C27—H27A⋯N3ii 0.93 2.62 3.373 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks the Universiti Sains Malaysia and the University of Bath for post-doctoral research fellowships.

supplementary crystallographic information

Comment

Schiff bases are one of the most prevalent mixed-donor ligand types in coordination chemistry. The biologically activities of their complexes have been studied extensively over the last decades (Anderson et al., 1997; Corden et al., 1996; Govindasamy et al., 1999; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). 2-Hydroxy Schiff base ligands are of additional interest mainly due to the existence of O—H···N and O···H—N type hydrogen bonds and tautomerization between the phenol-imine and keto-amine forms (Unaleroglu & Hokelek, 2002; Fun et al., 2008). This type of tautomerism plays an important role for distinguishing their photochromic and thermochromic properties (Cohen & Schmidt, 1964). Knowing the solution and solid-state structures of free Schiff bases is important in view of the intramolecular hydrogen bonding and comparing conformation with that in the structures of Schiff base complexes. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is reported herein.

Compound (I, Fig. 1), features intramolecular O—H···N and N—H···N hydrogen bonds to form six- and five-membered rings, producing S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The two phenyl substituents on the quinoxaline unit are inclined at an angle of 61.14 (9)° to one another. They also form dihedral angles of 43.38 (9) and 39.50 (9)°, respectively, with the ten–membered quinoxaline ring. In the crystal packing (Table 1 & Fig. 2), molecules are stacked when viewed down the b axis, being consolidated by π–π interactions with Cg2···Cg3 distances ranging from 3.6294 (11) – 3.6881 (11) Å; symmetry codes 1 - x, -1/2 + y, 3/2 - z and 1 - x, 1/2 + y, 3/2 - z, and Cg2 and Cg3 are the centroids of the C1–C6 and C8/C9/C10/C11/C14/C15 phenyl rings, respectively. The crystal structure is also stabilized by intramolecular O—H···N and N—H···N contacts.

Experimental

The synthetic method used for the preparation of (I) has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of a mixed dichloromethane-ethanol (3/1) solution of (I), held at room temperature.

Refinement

The H-atoms attached to O1 and N4 were located in a difference Fourier map and refined freely; see Table 1 for bond distances. The remaining H atoms were included in the riding model approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and atomic numbering. Intramolecular interactions are drawn as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing in (I), viewed down the b-axis showing stacking arrangement. Intramolecular and intermolecular interactions are shown as dashed lines.

Crystal data

C27H19ClN4O F000 = 936
Mr = 450.91 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2969 reflections
a = 22.8728 (11) Å θ = 2.9–28.1º
b = 7.3068 (4) Å µ = 0.21 mm1
c = 12.5632 (6) Å T = 100.0 (1) K
β = 92.037 (2)º Block, yellow
V = 2098.32 (18) Å3 0.55 × 0.09 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6180 independent reflections
Radiation source: fine-focus sealed tube 4118 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.062
T = 100.0(1) K θmax = 30.1º
φ and ω scans θmin = 0.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −32→31
Tmin = 0.843, Tmax = 0.985 k = −10→10
25593 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159   w = 1/[σ2(Fo2) + (0.0879P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
6180 reflections Δρmax = 0.40 e Å3
310 parameters Δρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.26328 (2) 0.46708 (7) 0.59559 (4) 0.02813 (14)
O1 0.44768 (6) 0.2687 (2) 0.91204 (10) 0.0252 (3)
N1 0.52358 (6) 0.3641 (2) 0.77495 (12) 0.0200 (3)
N2 0.72297 (7) 0.4713 (2) 0.88154 (11) 0.0174 (3)
N3 0.75971 (6) 0.3333 (2) 0.68619 (11) 0.0185 (3)
N4 0.60625 (8) 0.4640 (2) 0.92698 (13) 0.0263 (4)
C1 0.40599 (8) 0.3116 (3) 0.83649 (14) 0.0203 (4)
C2 0.34744 (8) 0.2879 (3) 0.85952 (15) 0.0236 (4)
H2A 0.3375 0.2402 0.9251 0.028*
C3 0.30418 (8) 0.3350 (3) 0.78542 (15) 0.0233 (4)
H3A 0.2651 0.3199 0.8013 0.028*
C4 0.31874 (8) 0.4049 (3) 0.68704 (15) 0.0214 (4)
C5 0.37624 (8) 0.4249 (3) 0.66116 (14) 0.0211 (4)
H5A 0.3855 0.4700 0.5946 0.025*
C6 0.42106 (8) 0.3773 (2) 0.73536 (14) 0.0197 (4)
C7 0.48149 (8) 0.3948 (3) 0.70633 (14) 0.0206 (4)
H7A 0.4901 0.4287 0.6373 0.025*
C8 0.58278 (7) 0.3677 (2) 0.74723 (14) 0.0183 (3)
C9 0.60160 (8) 0.3128 (3) 0.64598 (14) 0.0206 (4)
H9A 0.5739 0.2813 0.5932 0.025*
C10 0.65962 (8) 0.3050 (3) 0.62430 (14) 0.0205 (4)
H10A 0.6713 0.2684 0.5574 0.025*
C11 0.70168 (7) 0.3530 (2) 0.70445 (13) 0.0179 (3)
C12 0.79775 (7) 0.3790 (2) 0.76358 (13) 0.0175 (3)
C13 0.77919 (7) 0.4620 (2) 0.86047 (13) 0.0169 (3)
C14 0.68362 (7) 0.4111 (2) 0.80547 (13) 0.0169 (3)
C15 0.62300 (8) 0.4161 (2) 0.82744 (13) 0.0173 (3)
C16 0.85933 (7) 0.3244 (2) 0.74618 (13) 0.0186 (4)
C17 0.88232 (8) 0.3426 (3) 0.64549 (14) 0.0211 (4)
H17A 0.8603 0.3993 0.5913 0.025*
C18 0.93766 (8) 0.2771 (3) 0.62536 (14) 0.0232 (4)
H18A 0.9529 0.2925 0.5583 0.028*
C19 0.97043 (8) 0.1884 (3) 0.70519 (15) 0.0241 (4)
H19A 1.0072 0.1419 0.6912 0.029*
C20 0.94797 (8) 0.1695 (3) 0.80613 (14) 0.0221 (4)
H20A 0.9698 0.1112 0.8600 0.027*
C21 0.89277 (8) 0.2380 (3) 0.82614 (13) 0.0217 (4)
H21A 0.8780 0.2260 0.8938 0.026*
C22 0.82037 (8) 0.5458 (2) 0.93956 (13) 0.0181 (4)
C23 0.86747 (8) 0.6521 (3) 0.90850 (14) 0.0218 (4)
H23A 0.8743 0.6675 0.8365 0.026*
C24 0.90422 (8) 0.7350 (3) 0.98433 (15) 0.0250 (4)
H24A 0.9350 0.8081 0.9630 0.030*
C25 0.89514 (8) 0.7091 (3) 1.09180 (15) 0.0244 (4)
H25A 0.9205 0.7617 1.1426 0.029*
C26 0.84845 (8) 0.6051 (3) 1.12332 (14) 0.0227 (4)
H26A 0.8422 0.5887 1.1954 0.027*
C27 0.81078 (8) 0.5246 (2) 1.04769 (13) 0.0194 (4)
H27A 0.7790 0.4563 1.0694 0.023*
H1O1 0.4828 (12) 0.299 (4) 0.881 (2) 0.062 (9)*
H1N4 0.5681 (12) 0.531 (4) 0.9337 (19) 0.052 (8)*
H2N4 0.6396 (13) 0.516 (4) 0.976 (2) 0.060 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0190 (2) 0.0284 (3) 0.0367 (3) 0.0003 (2) −0.00334 (18) −0.0011 (2)
O1 0.0226 (7) 0.0291 (8) 0.0241 (6) 0.0010 (6) 0.0023 (5) 0.0007 (6)
N1 0.0176 (7) 0.0168 (7) 0.0256 (8) −0.0017 (6) 0.0014 (6) −0.0025 (6)
N2 0.0188 (7) 0.0151 (7) 0.0184 (7) 0.0010 (6) 0.0009 (5) 0.0010 (6)
N3 0.0183 (7) 0.0180 (7) 0.0194 (7) 0.0015 (6) 0.0001 (5) 0.0003 (6)
N4 0.0242 (8) 0.0304 (9) 0.0242 (8) 0.0028 (8) 0.0009 (6) −0.0002 (7)
C1 0.0223 (9) 0.0162 (8) 0.0223 (8) −0.0010 (7) 0.0013 (7) −0.0036 (7)
C2 0.0245 (9) 0.0206 (9) 0.0262 (9) −0.0020 (8) 0.0060 (7) −0.0033 (7)
C3 0.0182 (8) 0.0210 (9) 0.0308 (9) −0.0009 (8) 0.0039 (7) −0.0060 (8)
C4 0.0178 (8) 0.0161 (8) 0.0302 (9) 0.0003 (7) −0.0017 (7) −0.0042 (7)
C5 0.0212 (9) 0.0173 (9) 0.0251 (9) −0.0020 (8) 0.0022 (7) −0.0012 (7)
C6 0.0191 (8) 0.0158 (8) 0.0244 (9) −0.0004 (7) 0.0017 (7) −0.0026 (7)
C7 0.0212 (9) 0.0174 (9) 0.0234 (8) −0.0006 (8) 0.0027 (7) −0.0012 (7)
C8 0.0170 (8) 0.0142 (8) 0.0237 (8) −0.0002 (7) 0.0021 (6) 0.0005 (7)
C9 0.0196 (8) 0.0191 (9) 0.0230 (8) −0.0005 (7) −0.0012 (7) −0.0031 (7)
C10 0.0225 (9) 0.0197 (9) 0.0193 (8) 0.0021 (8) 0.0002 (7) −0.0018 (7)
C11 0.0178 (8) 0.0164 (8) 0.0194 (8) 0.0004 (7) 0.0007 (6) −0.0009 (7)
C12 0.0181 (8) 0.0164 (8) 0.0179 (8) 0.0002 (7) 0.0022 (6) 0.0024 (6)
C13 0.0168 (8) 0.0161 (8) 0.0179 (8) 0.0007 (7) 0.0011 (6) 0.0019 (6)
C14 0.0176 (8) 0.0142 (8) 0.0190 (8) 0.0011 (7) 0.0014 (6) 0.0012 (6)
C15 0.0185 (8) 0.0135 (8) 0.0199 (8) 0.0017 (7) 0.0024 (6) 0.0016 (7)
C16 0.0164 (8) 0.0178 (8) 0.0218 (8) −0.0005 (7) 0.0009 (6) −0.0016 (7)
C17 0.0198 (8) 0.0230 (9) 0.0206 (8) −0.0022 (8) 0.0006 (7) 0.0013 (7)
C18 0.0200 (9) 0.0296 (10) 0.0202 (8) −0.0031 (8) 0.0032 (7) −0.0018 (7)
C19 0.0154 (8) 0.0278 (10) 0.0292 (9) 0.0005 (8) 0.0034 (7) −0.0014 (8)
C20 0.0178 (8) 0.0251 (10) 0.0234 (9) 0.0030 (8) −0.0014 (7) 0.0012 (8)
C21 0.0212 (9) 0.0260 (10) 0.0182 (8) 0.0013 (8) 0.0030 (7) −0.0001 (7)
C22 0.0171 (8) 0.0165 (8) 0.0204 (8) 0.0032 (7) −0.0008 (6) −0.0015 (7)
C23 0.0205 (8) 0.0220 (9) 0.0231 (8) 0.0011 (8) 0.0032 (7) −0.0005 (7)
C24 0.0200 (9) 0.0237 (10) 0.0314 (10) −0.0031 (8) 0.0035 (7) −0.0025 (8)
C25 0.0198 (9) 0.0250 (10) 0.0280 (9) 0.0008 (8) −0.0040 (7) −0.0052 (8)
C26 0.0254 (9) 0.0224 (9) 0.0202 (8) 0.0025 (8) −0.0003 (7) −0.0006 (7)
C27 0.0170 (8) 0.0202 (9) 0.0210 (8) −0.0001 (7) 0.0023 (6) −0.0011 (7)

Geometric parameters (Å, °)

Cl1—C4 1.7414 (19) C10—H10A 0.9300
O1—C1 1.358 (2) C11—C14 1.414 (2)
O1—H1O1 0.93 (3) C12—C13 1.437 (2)
N1—C7 1.289 (2) C12—C16 1.488 (2)
N1—C8 1.410 (2) C13—C22 1.478 (2)
N2—C13 1.324 (2) C14—C15 1.424 (2)
N2—C14 1.362 (2) C16—C21 1.392 (2)
N3—C12 1.324 (2) C16—C17 1.393 (2)
N3—C11 1.363 (2) C17—C18 1.385 (2)
N4—C15 1.366 (2) C17—H17A 0.9300
N4—H1N4 1.01 (3) C18—C19 1.391 (3)
N4—H2N4 1.03 (3) C18—H18A 0.9300
C1—C2 1.391 (3) C19—C20 1.392 (3)
C1—C6 1.412 (2) C19—H19A 0.9300
C2—C3 1.378 (3) C20—C21 1.389 (2)
C2—H2A 0.9300 C20—H20A 0.9300
C3—C4 1.389 (3) C21—H21A 0.9300
C3—H3A 0.9300 C22—C27 1.392 (2)
C4—C5 1.374 (2) C22—C23 1.395 (2)
C5—C6 1.405 (2) C23—C24 1.387 (3)
C5—H5A 0.9300 C23—H23A 0.9300
C6—C7 1.448 (2) C24—C25 1.386 (3)
C7—H7A 0.9300 C24—H24A 0.9300
C8—C15 1.386 (2) C25—C26 1.380 (3)
C8—C9 1.415 (2) C25—H25A 0.9300
C9—C10 1.365 (2) C26—C27 1.390 (2)
C9—H9A 0.9300 C26—H26A 0.9300
C10—C11 1.412 (2) C27—H27A 0.9300
C1—O1—H1O1 104.0 (16) N2—C13—C22 116.42 (15)
C7—N1—C8 122.17 (15) C12—C13—C22 122.95 (15)
C13—N2—C14 117.74 (14) N2—C14—C11 121.32 (15)
C12—N3—C11 117.91 (15) N2—C14—C15 118.65 (15)
C15—N4—H1N4 118.3 (14) C11—C14—C15 119.96 (16)
C15—N4—H2N4 114.3 (16) N4—C15—C8 122.02 (16)
H1N4—N4—H2N4 113 (2) N4—C15—C14 119.38 (16)
O1—C1—C2 118.90 (16) C8—C15—C14 118.58 (15)
O1—C1—C6 121.29 (16) C21—C16—C17 118.89 (16)
C2—C1—C6 119.81 (17) C21—C16—C12 120.97 (15)
C3—C2—C1 120.12 (17) C17—C16—C12 119.83 (15)
C3—C2—H2A 119.9 C18—C17—C16 120.63 (17)
C1—C2—H2A 119.9 C18—C17—H17A 119.7
C2—C3—C4 120.27 (17) C16—C17—H17A 119.7
C2—C3—H3A 119.9 C17—C18—C19 120.12 (16)
C4—C3—H3A 119.9 C17—C18—H18A 119.9
C5—C4—C3 120.78 (17) C19—C18—H18A 119.9
C5—C4—Cl1 119.81 (14) C18—C19—C20 119.77 (17)
C3—C4—Cl1 119.40 (14) C18—C19—H19A 120.1
C4—C5—C6 119.91 (17) C20—C19—H19A 120.1
C4—C5—H5A 120.0 C21—C20—C19 119.75 (17)
C6—C5—H5A 120.0 C21—C20—H20A 120.1
C5—C6—C1 119.04 (16) C19—C20—H20A 120.1
C5—C6—C7 119.45 (16) C20—C21—C16 120.81 (16)
C1—C6—C7 121.51 (16) C20—C21—H21A 119.6
N1—C7—C6 120.88 (16) C16—C21—H21A 119.6
N1—C7—H7A 119.6 C27—C22—C23 119.01 (16)
C6—C7—H7A 119.6 C27—C22—C13 119.40 (16)
C15—C8—N1 116.33 (15) C23—C22—C13 121.53 (15)
C15—C8—C9 120.70 (16) C24—C23—C22 120.41 (16)
N1—C8—C9 122.82 (15) C24—C23—H23A 119.8
C10—C9—C8 121.32 (16) C22—C23—H23A 119.8
C10—C9—H9A 119.3 C25—C24—C23 120.07 (18)
C8—C9—H9A 119.3 C25—C24—H24A 120.0
C9—C10—C11 119.34 (16) C23—C24—H24A 120.0
C9—C10—H10A 120.3 C26—C25—C24 119.92 (17)
C11—C10—H10A 120.3 C26—C25—H25A 120.0
N3—C11—C10 119.78 (15) C24—C25—H25A 120.0
N3—C11—C14 120.02 (15) C25—C26—C27 120.26 (16)
C10—C11—C14 120.09 (16) C25—C26—H26A 119.9
N3—C12—C13 121.47 (15) C27—C26—H26A 119.9
N3—C12—C16 115.16 (15) C26—C27—C22 120.28 (17)
C13—C12—C16 123.18 (15) C26—C27—H27A 119.9
N2—C13—C12 120.61 (15) C22—C27—H27A 119.9
O1—C1—C2—C3 178.24 (16) C10—C11—C14—N2 −175.02 (16)
C6—C1—C2—C3 −2.5 (3) N3—C11—C14—C15 −174.42 (16)
C1—C2—C3—C4 0.5 (3) C10—C11—C14—C15 1.8 (3)
C2—C3—C4—C5 1.3 (3) N1—C8—C15—N4 −2.2 (3)
C2—C3—C4—Cl1 −178.91 (14) C9—C8—C15—N4 −177.84 (17)
C3—C4—C5—C6 −1.1 (3) N1—C8—C15—C14 176.25 (16)
Cl1—C4—C5—C6 179.12 (14) C9—C8—C15—C14 0.6 (3)
C4—C5—C6—C1 −0.9 (3) N2—C14—C15—N4 −6.2 (3)
C4—C5—C6—C7 178.53 (17) C11—C14—C15—N4 176.85 (17)
O1—C1—C6—C5 −178.08 (16) N2—C14—C15—C8 175.28 (16)
C2—C1—C6—C5 2.7 (3) C11—C14—C15—C8 −1.6 (3)
O1—C1—C6—C7 2.5 (3) N3—C12—C16—C21 −132.71 (18)
C2—C1—C6—C7 −176.75 (17) C13—C12—C16—C21 42.4 (3)
C8—N1—C7—C6 175.52 (16) N3—C12—C16—C17 40.8 (2)
C5—C6—C7—N1 175.24 (17) C13—C12—C16—C17 −144.14 (18)
C1—C6—C7—N1 −5.3 (3) C21—C16—C17—C18 −0.4 (3)
C7—N1—C8—C15 151.46 (17) C12—C16—C17—C18 −174.06 (17)
C7—N1—C8—C9 −33.0 (3) C16—C17—C18—C19 1.4 (3)
C15—C8—C9—C10 0.3 (3) C17—C18—C19—C20 −1.5 (3)
N1—C8—C9—C10 −175.08 (17) C18—C19—C20—C21 0.5 (3)
C8—C9—C10—C11 −0.1 (3) C19—C20—C21—C16 0.5 (3)
C12—N3—C11—C10 −179.68 (16) C17—C16—C21—C20 −0.6 (3)
C12—N3—C11—C14 −3.4 (3) C12—C16—C21—C20 173.01 (17)
C9—C10—C11—N3 175.32 (17) N2—C13—C22—C27 40.2 (2)
C9—C10—C11—C14 −0.9 (3) C12—C13—C22—C27 −141.69 (18)
C11—N3—C12—C13 −5.4 (3) N2—C13—C22—C23 −137.21 (17)
C11—N3—C12—C16 169.78 (15) C12—C13—C22—C23 40.9 (3)
C14—N2—C13—C12 −4.3 (2) C27—C22—C23—C24 0.1 (3)
C14—N2—C13—C22 173.81 (15) C13—C22—C23—C24 177.55 (17)
N3—C12—C13—N2 9.7 (3) C22—C23—C24—C25 1.5 (3)
C16—C12—C13—N2 −165.05 (17) C23—C24—C25—C26 −1.9 (3)
N3—C12—C13—C22 −168.31 (16) C24—C25—C26—C27 0.7 (3)
C16—C12—C13—C22 16.9 (3) C25—C26—C27—C22 1.0 (3)
C13—N2—C14—C11 −4.5 (3) C23—C22—C27—C26 −1.4 (3)
C13—N2—C14—C15 178.63 (16) C13—C22—C27—C26 −178.89 (17)
N3—C11—C14—N2 8.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···N1 0.93 (3) 1.72 (3) 2.584 (2) 153 (2)
N4—H1N4···O1i 1.01 (3) 2.47 (3) 3.099 (2) 120.4 (18)
N4—H2N4···N2 1.04 (3) 2.31 (3) 2.750 (2) 104.3 (17)
C27—H27A···N3ii 0.93 2.62 3.373 (2) 138

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2279).

References

  1. Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftland, H. L. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2041–2051.
  5. Corden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777–2779.
  6. Fun, H.-K., Kia, R. & Raithby, P. R. (2008). Acta Cryst. E64, o1271–o1272. [DOI] [PMC free article] [PubMed]
  7. Govindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368–1369.
  8. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  9. Li, C. H. & Chang, T. C. (1991). Eur. Polym. J.27, 35–39.
  10. Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Unaleroglu, C. & Hökelek, T. (2002). Spectrosc. Lett.32, 317–326.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020023/tk2279sup1.cif

e-64-o1411-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020023/tk2279Isup2.hkl

e-64-o1411-Isup2.hkl (302.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES