Abstract
The title compound, C19H18O, crystallizes in a non-centrosymmetric space group although the molecule has no chiral centre. The dihedral angle between the aromatic rings is 20.43 (13)°. The structure is stabilized by two intramolecular hydrogen bonds, and by four π–π and three C—H⋯π interactions between the aromatic rings. The perpendicular distances between the centroids of the rings involved in the π–π interactions have values of 1.996, 2.061, 2.181 and 2.189 Å.
Related literature
For related literature, see: Butcher et al. (2006 ▶); Conard & Dolliver (1943 ▶); Harrison et al. (2006 ▶).
Experimental
Crystal data
C19H18O
M r = 262.33
Monoclinic,
a = 19.937 (2) Å
b = 5.8637 (5) Å
c = 14.9207 (14) Å
β = 121.001 (3)°
V = 1495.1 (2) Å3
Z = 4
Mo Kα radiation radiation
μ = 0.07 mm−1
T = 296 (2) K
0.25 × 0.20 × 0.15 mm
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.980, T max = 0.988
9611 measured reflections
2288 independent reflections
1800 reflections with I > 2σ(I)
R int = 0.024
Refinement
R[F 2 > 2σ(F 2)] = 0.048
wR(F 2) = 0.137
S = 1.04
2288 reflections
183 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.22 e Å−3
Δρmin = −0.21 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2003 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶) and PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020084/bq2087sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020084/bq2087Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
CgA and CgB are the centroids of the C4–C9 and C13–C18 rings, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C3—H3⋯O1 | 0.93 | 2.49 | 2.817 (4) | 101 |
| C12—H12⋯O1 | 0.93 | 2.48 | 2.819 (3) | 102 |
| C5—H5⋯CgAi | 0.93 | 2.82 | 3.523 (3) | 133 |
| C9—H9⋯CgBii | 0.93 | 2.89 | 3.604 (3) | 134 |
| C18—H18⋯CgBiii | 0.93 | 2.95 | 3.621 (3) | 131 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
MNA gratefully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Programme (PIN 042-120607-PS2-183).
supplementary crystallographic information
Comment
The chalcones are being synthesized since long for various applications. The title compound (I) differs from 1,5-Bis(4-methoxyphenyl)penta-1,4- dien-3-one (II) (Harrison et al., 2006) and 1,5-Bis(4-chlorophenyl)penta-1,4- dien-3-one (III) (Butcher et al., 2006) due the attachement of methyl group at para position instead of methoxy or chloro moieties. The authors have reported their nonlinear optical (NLO) activity as the compounds crystallize in non-centrosymmetric space groups. The title compound have a monoclinic crystal system and a non-centrosymmetric space group C2. Therefore, it is assumed that this compound will also have nonlinear optical activity.
We compare the bond distances and bond angles realised in (I) with the corresponding values observed in (II) and (III). The central portion of (I) shows double and single bonds originating from O1-atom and five-C-atom behave like a backbone. In (I), the bond distance O1==C1 is 1.211 (4) Å, greater than 1.170 (12) Å (III) but shorter than 1.230 (6) Å as in (II). The bond distances C1—C2 = 1.480 (3) Å, C2==C3 = 1.329 (3) Å, C3—C4 = 1.465 (3) Å are observed in (I), in (II) and (III) the corresponding values are [1.476 (4), 1.318 (5), 1.475 (4) Å] and [1.579 (10), 1.239 (7), 1.502 (7) Å], respectively. The range of bond angles for backbone C-atoms in (I) is 116.0 (2)°-127.8 (2)°, whereas in (II) and (III), the range is 123.8 (5)°- 126.4 (4)° and 103.1 (9)°-128.5 (4)°, respectively. The dihedral angle between the aromatic rings A (C4—C9) and B (C13—C18) is 20.27 (13)°, which is less than 56.92 (9)° and 53.4 (5) as reported in (II) and (III), respectively. The title compound is stabilized due to two intramolecular H-bonding (Fig 1) and three C—H···π interactions as given in Table 1. There exist also π–π-interactions between the aromatic rings. The perpendicular distance between the centroids CgA and CgB [(CgA···CgAiv), symmetry code: iv = -x + 1/2, y - 1/2, -z], [(CgA···CgBv), symmetry code: v = -x + 1, y + 1, -z + 1], [(CgB···CgAii), symmetry code: ii = -x + 1, y, -z + 1] and [(CgB···CgBvi), symmetry code: vi = -x + 3/2, y - 1/2, -z + 1] have values of 1.996, 2.181, 2.061 and 2.189 Å, respectively.
Experimental
The title compound (I) was synthesized using the method of Conard & Dolliver, 1943. Sodium hydroxide (0.8 g, 0.0208 mmol) was dissolved in distilled water (10 ml) and ethanol (8 ml) in a round bottom flask. The solution was cooled to room temperature. Half of the mixture of p-tolualdehide (1 g, 0.00833 mmol) and acetone (0.24 g, 0.00417 mmol) added to the above solution and stirred at room temperature for 15 minute then the remaining mixture was added and stirred for 2 h under the same conditions. Yellow precipitate obtained was filtered and washed with cold water. The washed precipitate was crystallized in aceton under slow evaporation.
Refinement
H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for other H atoms. Friedel pairs were averaged before the final refinement as the absolute configuration could not be determined unambiguously.
Figures
Fig. 1.
ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dotted lines.
Fig. 2.
The packing figure (PLATON: Spek, 2003) which shows the stacking of molecules in a unit cell.
Crystal data
| C19H18O | F000 = 560 |
| Mr = 262.33 | Dx = 1.165 Mg m−3 |
| Monoclinic, C2 | Mo Kα radiation radiation λ = 0.71073 Å |
| Hall symbol: C 2y | Cell parameters from 3173 reflections |
| a = 19.937 (2) Å | θ = 2.1–29.6º |
| b = 5.8637 (5) Å | µ = 0.07 mm−1 |
| c = 14.9207 (14) Å | T = 296 (2) K |
| β = 121.001 (3)º | Prism, yellow |
| V = 1495.1 (2) Å3 | 0.25 × 0.20 × 0.15 mm |
| Z = 4 |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 2288 independent reflections |
| Radiation source: fine-focus sealed tube | 1800 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.024 |
| Detector resolution: 7.40 pixels mm-1 | θmax = 29.6º |
| T = 296(2) K | θmin = 2.1º |
| ω scans | h = −26→27 |
| Absorption correction: multi-scan(SADABS; Bruker, 2005) | k = −8→4 |
| Tmin = 0.980, Tmax = 0.988 | l = −20→18 |
| 9611 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
| wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.0717P)2 + 0.4143P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 2288 reflections | Δρmax = 0.22 e Å−3 |
| 183 parameters | Δρmin = −0.21 e Å−3 |
| 1 restraint | Extinction correction: none |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 726 Friedel pairs |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.49937 (12) | 1.0189 (4) | 0.63720 (18) | 0.0745 (7) | |
| C1 | 0.51762 (14) | 0.8202 (5) | 0.6423 (2) | 0.0495 (6) | |
| C2 | 0.59839 (13) | 0.7416 (5) | 0.71598 (18) | 0.0470 (6) | |
| H2 | 0.6115 | 0.5906 | 0.7132 | 0.056* | |
| C3 | 0.65267 (13) | 0.8809 (4) | 0.78604 (17) | 0.0429 (5) | |
| H3 | 0.6374 | 1.0308 | 0.7861 | 0.051* | |
| C4 | 0.73402 (12) | 0.8232 (4) | 0.86323 (17) | 0.0383 (5) | |
| C5 | 0.77901 (14) | 0.9756 (4) | 0.94391 (19) | 0.0469 (5) | |
| H5 | 0.7576 | 1.1150 | 0.9460 | 0.056* | |
| C6 | 0.85484 (15) | 0.9234 (5) | 1.0209 (2) | 0.0520 (6) | |
| H6 | 0.8835 | 1.0278 | 1.0741 | 0.062* | |
| C7 | 0.88884 (13) | 0.7179 (5) | 1.02006 (18) | 0.0482 (6) | |
| C8 | 0.84507 (14) | 0.5688 (5) | 0.9386 (2) | 0.0523 (6) | |
| H8 | 0.8672 | 0.4316 | 0.9355 | 0.063* | |
| C9 | 0.76890 (13) | 0.6194 (4) | 0.86135 (18) | 0.0459 (6) | |
| H9 | 0.7407 | 0.5157 | 0.8076 | 0.055* | |
| C10 | 0.97104 (15) | 0.6567 (8) | 1.1064 (2) | 0.0751 (10) | |
| H10A | 0.9802 | 0.7163 | 1.1717 | 0.113* | |
| H10B | 1.0082 | 0.7211 | 1.0910 | 0.113* | |
| H10C | 0.9767 | 0.4938 | 1.1112 | 0.113* | |
| C11 | 0.46029 (14) | 0.6396 (4) | 0.57787 (19) | 0.0474 (6) | |
| H11 | 0.4775 | 0.4907 | 0.5810 | 0.057* | |
| C12 | 0.38539 (13) | 0.6886 (5) | 0.51634 (17) | 0.0439 (5) | |
| H12 | 0.3713 | 0.8398 | 0.5164 | 0.053* | |
| C13 | 0.32183 (13) | 0.5337 (4) | 0.44805 (17) | 0.0405 (5) | |
| C14 | 0.33464 (13) | 0.3184 (4) | 0.41838 (19) | 0.0447 (5) | |
| H14 | 0.3856 | 0.2673 | 0.4444 | 0.054* | |
| C15 | 0.27265 (14) | 0.1824 (4) | 0.35119 (18) | 0.0444 (5) | |
| H15 | 0.2822 | 0.0410 | 0.3318 | 0.053* | |
| C16 | 0.19537 (14) | 0.2537 (4) | 0.31160 (18) | 0.0432 (5) | |
| C17 | 0.18269 (14) | 0.4658 (4) | 0.34177 (19) | 0.0455 (5) | |
| H17 | 0.1318 | 0.5159 | 0.3167 | 0.055* | |
| C18 | 0.24460 (13) | 0.6022 (4) | 0.40822 (18) | 0.0438 (5) | |
| H18 | 0.2348 | 0.7438 | 0.4271 | 0.053* | |
| C19 | 0.12788 (15) | 0.1027 (5) | 0.2395 (2) | 0.0596 (7) | |
| H19A | 0.1447 | −0.0047 | 0.2065 | 0.089* | |
| H19B | 0.0862 | 0.1944 | 0.1871 | 0.089* | |
| H19C | 0.1097 | 0.0220 | 0.2790 | 0.089* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0515 (11) | 0.0599 (12) | 0.0763 (14) | 0.0052 (10) | 0.0073 (10) | −0.0046 (11) |
| C1 | 0.0385 (12) | 0.0582 (15) | 0.0410 (13) | 0.0011 (11) | 0.0128 (10) | −0.0008 (12) |
| C2 | 0.0365 (11) | 0.0545 (14) | 0.0420 (12) | 0.0027 (11) | 0.0146 (10) | 0.0004 (11) |
| C3 | 0.0392 (11) | 0.0471 (12) | 0.0406 (12) | 0.0013 (11) | 0.0194 (10) | 0.0008 (10) |
| C4 | 0.0339 (10) | 0.0444 (11) | 0.0356 (11) | −0.0026 (9) | 0.0171 (9) | 0.0000 (10) |
| C5 | 0.0474 (13) | 0.0427 (11) | 0.0500 (13) | −0.0041 (10) | 0.0247 (11) | −0.0086 (11) |
| C6 | 0.0436 (13) | 0.0587 (15) | 0.0446 (13) | −0.0127 (12) | 0.0162 (11) | −0.0164 (12) |
| C7 | 0.0342 (11) | 0.0621 (15) | 0.0434 (13) | −0.0031 (11) | 0.0164 (10) | 0.0021 (13) |
| C8 | 0.0422 (12) | 0.0522 (14) | 0.0591 (15) | 0.0055 (11) | 0.0236 (11) | −0.0037 (13) |
| C9 | 0.0398 (12) | 0.0466 (12) | 0.0456 (13) | −0.0060 (10) | 0.0179 (10) | −0.0144 (11) |
| C10 | 0.0380 (13) | 0.098 (3) | 0.0664 (18) | 0.0033 (17) | 0.0103 (13) | 0.0052 (19) |
| C11 | 0.0432 (12) | 0.0502 (13) | 0.0443 (13) | 0.0016 (11) | 0.0193 (10) | 0.0002 (11) |
| C12 | 0.0431 (12) | 0.0469 (11) | 0.0406 (12) | 0.0004 (11) | 0.0208 (10) | 0.0016 (10) |
| C13 | 0.0415 (11) | 0.0430 (11) | 0.0341 (11) | −0.0038 (10) | 0.0173 (9) | 0.0034 (10) |
| C14 | 0.0403 (11) | 0.0485 (12) | 0.0451 (12) | 0.0046 (10) | 0.0219 (10) | 0.0066 (11) |
| C15 | 0.0518 (13) | 0.0388 (10) | 0.0449 (12) | −0.0001 (10) | 0.0265 (11) | 0.0004 (10) |
| C16 | 0.0461 (12) | 0.0426 (11) | 0.0384 (11) | −0.0039 (10) | 0.0201 (10) | 0.0035 (9) |
| C17 | 0.0368 (11) | 0.0469 (12) | 0.0483 (13) | 0.0041 (10) | 0.0187 (10) | 0.0076 (11) |
| C18 | 0.0445 (12) | 0.0418 (11) | 0.0459 (13) | 0.0042 (10) | 0.0238 (10) | 0.0041 (10) |
| C19 | 0.0507 (14) | 0.0595 (16) | 0.0560 (15) | −0.0103 (13) | 0.0185 (12) | −0.0065 (14) |
Geometric parameters (Å, °)
| O1—C1 | 1.211 (4) | C10—H10C | 0.9600 |
| C1—C2 | 1.480 (3) | C11—C12 | 1.320 (3) |
| C1—C11 | 1.490 (4) | C11—H11 | 0.9300 |
| C2—C3 | 1.329 (3) | C12—C13 | 1.463 (3) |
| C2—H2 | 0.9300 | C12—H12 | 0.9300 |
| C3—C4 | 1.465 (3) | C13—C18 | 1.394 (3) |
| C3—H3 | 0.9300 | C13—C14 | 1.404 (3) |
| C4—C9 | 1.390 (3) | C14—C15 | 1.375 (3) |
| C4—C5 | 1.393 (3) | C14—H14 | 0.9300 |
| C5—C6 | 1.382 (4) | C15—C16 | 1.400 (3) |
| C5—H5 | 0.9300 | C15—H15 | 0.9300 |
| C6—C7 | 1.386 (4) | C16—C17 | 1.390 (3) |
| C6—H6 | 0.9300 | C16—C19 | 1.503 (3) |
| C7—C8 | 1.383 (4) | C17—C18 | 1.373 (3) |
| C7—C10 | 1.516 (3) | C17—H17 | 0.9300 |
| C8—C9 | 1.385 (3) | C18—H18 | 0.9300 |
| C8—H8 | 0.9300 | C19—H19A | 0.9600 |
| C9—H9 | 0.9300 | C19—H19B | 0.9600 |
| C10—H10A | 0.9600 | C19—H19C | 0.9600 |
| C10—H10B | 0.9600 | ||
| O1—C1—C2 | 121.5 (3) | H10B—C10—H10C | 109.5 |
| O1—C1—C11 | 122.5 (2) | C12—C11—C1 | 120.7 (2) |
| C2—C1—C11 | 116.0 (2) | C12—C11—H11 | 119.6 |
| C3—C2—C1 | 121.8 (2) | C1—C11—H11 | 119.6 |
| C3—C2—H2 | 119.1 | C11—C12—C13 | 127.8 (2) |
| C1—C2—H2 | 119.1 | C11—C12—H12 | 116.1 |
| C2—C3—C4 | 126.8 (2) | C13—C12—H12 | 116.1 |
| C2—C3—H3 | 116.6 | C18—C13—C14 | 117.7 (2) |
| C4—C3—H3 | 116.6 | C18—C13—C12 | 119.2 (2) |
| C9—C4—C5 | 117.6 (2) | C14—C13—C12 | 123.0 (2) |
| C9—C4—C3 | 123.1 (2) | C15—C14—C13 | 120.7 (2) |
| C5—C4—C3 | 119.4 (2) | C15—C14—H14 | 119.7 |
| C6—C5—C4 | 121.2 (2) | C13—C14—H14 | 119.7 |
| C6—C5—H5 | 119.4 | C14—C15—C16 | 121.0 (2) |
| C4—C5—H5 | 119.4 | C14—C15—H15 | 119.5 |
| C5—C6—C7 | 121.1 (2) | C16—C15—H15 | 119.5 |
| C5—C6—H6 | 119.5 | C17—C16—C15 | 118.3 (2) |
| C7—C6—H6 | 119.5 | C17—C16—C19 | 120.9 (2) |
| C8—C7—C6 | 117.9 (2) | C15—C16—C19 | 120.7 (2) |
| C8—C7—C10 | 120.9 (3) | C18—C17—C16 | 120.6 (2) |
| C6—C7—C10 | 121.2 (3) | C18—C17—H17 | 119.7 |
| C7—C8—C9 | 121.4 (3) | C16—C17—H17 | 119.7 |
| C7—C8—H8 | 119.3 | C17—C18—C13 | 121.7 (2) |
| C9—C8—H8 | 119.3 | C17—C18—H18 | 119.2 |
| C8—C9—C4 | 120.9 (2) | C13—C18—H18 | 119.2 |
| C8—C9—H9 | 119.6 | C16—C19—H19A | 109.5 |
| C4—C9—H9 | 119.6 | C16—C19—H19B | 109.5 |
| C7—C10—H10A | 109.5 | H19A—C19—H19B | 109.5 |
| C7—C10—H10B | 109.5 | C16—C19—H19C | 109.5 |
| H10A—C10—H10B | 109.5 | H19A—C19—H19C | 109.5 |
| C7—C10—H10C | 109.5 | H19B—C19—H19C | 109.5 |
| H10A—C10—H10C | 109.5 | ||
| O1—C1—C2—C3 | 6.0 (4) | O1—C1—C11—C12 | −4.0 (4) |
| C11—C1—C2—C3 | −172.2 (2) | C2—C1—C11—C12 | 174.1 (2) |
| C1—C2—C3—C4 | 179.6 (2) | C1—C11—C12—C13 | 179.6 (2) |
| C2—C3—C4—C9 | 11.2 (4) | C11—C12—C13—C18 | 164.8 (2) |
| C2—C3—C4—C5 | −167.6 (2) | C11—C12—C13—C14 | −16.6 (4) |
| C9—C4—C5—C6 | −1.7 (4) | C18—C13—C14—C15 | 0.8 (3) |
| C3—C4—C5—C6 | 177.1 (2) | C12—C13—C14—C15 | −177.9 (2) |
| C4—C5—C6—C7 | 0.4 (4) | C13—C14—C15—C16 | −0.7 (3) |
| C5—C6—C7—C8 | 1.3 (4) | C14—C15—C16—C17 | 0.1 (3) |
| C5—C6—C7—C10 | −177.9 (3) | C14—C15—C16—C19 | −179.0 (2) |
| C6—C7—C8—C9 | −1.6 (4) | C15—C16—C17—C18 | 0.4 (3) |
| C10—C7—C8—C9 | 177.6 (3) | C19—C16—C17—C18 | 179.5 (2) |
| C7—C8—C9—C4 | 0.2 (4) | C16—C17—C18—C13 | −0.3 (3) |
| C5—C4—C9—C8 | 1.5 (4) | C14—C13—C18—C17 | −0.3 (3) |
| C3—C4—C9—C8 | −177.4 (2) | C12—C13—C18—C17 | 178.4 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3···O1 | 0.93 | 2.49 | 2.817 (4) | 101 |
| C12—H12···O1 | 0.93 | 2.48 | 2.819 (3) | 102 |
| C5—H5···CgAi | 0.93 | 2.82 | 3.523 (3) | 133 |
| C9—H9···CgBii | 0.93 | 2.89 | 3.604 (3) | 134 |
| C18—H18···CgBiii | 0.93 | 2.95 | 3.621 (3) | 131 |
Symmetry codes: (i) −x+1/2, y+1/2, −z; (ii) −x+1, y, −z+1; (iii) −x+3/2, y+1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2087).
References
- Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1973–o1975.
- Conard, C. R. & Dolliver, M. A. (1943). Org. Synth Coll. Vol. II, pp. 167–168.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020084/bq2087sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020084/bq2087Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


