Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1416. doi: 10.1107/S1600536808020096

1,4-Diazo­niabicyclo­[2.2.2]octane bis­(2-chloro­benzoate)

Signe Skovsgaard a, Andrew D Bond a,*
PMCID: PMC2962050  PMID: 21203135

Abstract

The title compound, C6H14N2 2+·2C7H4ClO2 , contains trimeric units linked by N—H⋯O hydrogen bonds. The carboxyl­ate groups of the 2-chloro­benzoate anions form dihedral angles of 66.1 (1) and 76.1 (1)° with the respective chloro­benzene rings to which they are bound. The hydrogen-bonded trimers are arranged in layers in the (200) planes and the chloro­benzoate anions form edge-to-face inter­actions between layers, with dihedral angles of 61.9 (1) and 49.8 (1)° and centroid–centroid distances of 4.85 (1) and 4.65 (1) Å, respectively, for two crystallographically distinct inter­actions.

Related literature

For other co-crystals of 1,4-diazo­niabicyclo­[2.2.2]octane and carboxylic acids, see: Meehan et al. (1997); Burchell et al. (2000); Burchell, Glidewell et al. (2001); Burchell, Ferguson et al. (2001). For the crystal structure of 2-chloro­benzoic acid, see: Ferguson & Sim (1961).graphic file with name e-64-o1416-scheme1.jpg

Experimental

Crystal data

  • C6H14N2 2+·2C7H4ClO2

  • M r = 425.30

  • Orthorhombic, Inline graphic

  • a = 19.7694 (12) Å

  • b = 11.3986 (6) Å

  • c = 8.9751 (5) Å

  • V = 2022.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.844, T max = 0.966

  • 21779 measured reflections

  • 3538 independent reflections

  • 3251 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.090

  • S = 1.06

  • 3538 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 1629 Friedel pairs

  • Flack parameter: −0.02 (5)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020096/bx2155sup1.cif

e-64-o1416-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020096/bx2155Isup2.hkl

e-64-o1416-Isup2.hkl (173.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 1.65 2.556 (2) 170
N2—H2A⋯O3 0.91 1.69 2.587 (2) 169

Acknowledgments

We are grateful to the Danish Natural Science Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

supplementary crystallographic information

Comment

The title compound, (C6H14N2)(C7H4ClO2)2, was obtained by co-crystallization of diazabicylo[2.2.2]octane and 2-chlorobenzoic acid in methanol solution. The crystal structure of 2-chlorobenzoic acid (Ferguson & Sim, 1961) contains dimers formed by hydrogen bonds between the carboxyl groups. The purpose of the co-crystallization was to insert DABCO into the hydrogen-bonded dimer, to examine the influence on the intermolecular interactions between the 2-chlorobenzoic acid molecules.

The co-crystal contains the anticipated trimeric hydrogen-bond motif, with the trimers lying in layers parallel to the bc planes (Figs. 2 & 3). The Cl-substituents of the chlorobenzoate anions point into the centres of the layers, and the interlayer interactions comprise edge-to-face interactions involving H4A and H5A and their counterparts H11A and H12A, with dihedral angles 61.9 (1) and 49.8 (1)° and centroid-centroid distances 4.85 (1) and 4.65 (1) Å, for the two interactions respectively. The interactions are significantly different from the interlayer interactions in 2-chlorobenzoic acid itself, where adjacent rings form a dihedral angle of 49.3 (1)°, but the Cl-substituent points towards the adjacent ring centroid.

Experimental

Separate saturated solutions of 2-chlorobenzoic acid (0.391 g, 0.0025 mmol) and diazabicyclo[2.2.2]octane (0.135 g, 0.0012 mmol) in warm methanol were combined and refluxed with stirring for 1 h. The solution was cooled slowly, giving colourless crystals of the title compound after ca 1 h.

Refinement

H atoms bound to C atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). The H atoms bound to N1 and N2 were visible in a difference Fourier map, but were placed geometrically (N—H = 0.91 Å) and allowed to ride with Uiso(H) = 1.2Ueq(N). The assignment as a salt is consistent with expectations from pKa values.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms. The dashed lines denote N+—H···O- hydrogen bonds.

Fig. 2.

Fig. 2.

View along the c axis, showing the layered arrangement of hydrogen-bonded trimers. The light blue lines denote N+—H···O- hydrogen bonds.

Fig. 3.

Fig. 3.

View along the b axis. The light blue lines denote N+—H···O- hydrogen bonds.

Crystal data

C6H14N22+·2C7H4ClO2 F000 = 888
Mr = 425.30 Dx = 1.397 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 9140 reflections
a = 19.7694 (12) Å θ = 3.1–24.3º
b = 11.3986 (6) Å µ = 0.35 mm1
c = 8.9751 (5) Å T = 298 (2) K
V = 2022.5 (2) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Bruker–Nonius X8 APEXII CCD diffractometer 3538 independent reflections
Radiation source: fine-focus sealed tube 3251 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 298(2) K θmax = 25.0º
Thin–slice ω and φ scans θmin = 3.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003) h = −23→23
Tmin = 0.844, Tmax = 0.966 k = −13→12
21779 measured reflections l = −10→10

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033   w = 1/[σ2(Fo2) + (0.0543P)2 + 0.354P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.26 e Å3
3538 reflections Δρmin = −0.19 e Å3
253 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 1629 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.58385 (3) 1.34004 (5) 0.57363 (7) 0.05244 (17)
Cl2 0.41713 (4) 0.14065 (6) 0.64801 (8) 0.0658 (2)
O1 0.58704 (9) 1.03874 (14) 0.7359 (2) 0.0556 (5)
O2 0.61776 (12) 1.05458 (17) 0.5009 (2) 0.0716 (6)
O3 0.43357 (9) 0.45727 (15) 0.4822 (2) 0.0542 (4)
O4 0.40470 (10) 0.42055 (18) 0.7161 (2) 0.0653 (5)
N1 0.53241 (8) 0.84726 (14) 0.6495 (2) 0.0351 (4)
H1A 0.5474 0.9192 0.6783 0.042*
N2 0.49115 (9) 0.64905 (14) 0.5697 (2) 0.0383 (4)
H2A 0.4760 0.5771 0.5410 0.046*
C1 0.67102 (10) 1.17744 (18) 0.6779 (2) 0.0357 (4)
C2 0.66021 (10) 1.29512 (17) 0.6508 (2) 0.0353 (4)
C3 0.70790 (11) 1.3795 (2) 0.6867 (3) 0.0459 (5)
H3A 0.6996 1.4582 0.6666 0.055*
C4 0.76781 (12) 1.3457 (2) 0.7524 (3) 0.0574 (7)
H4A 0.8003 1.4019 0.7756 0.069*
C5 0.77993 (13) 1.2290 (3) 0.7838 (3) 0.0590 (7)
H5A 0.8200 1.2061 0.8299 0.071*
C6 0.73135 (12) 1.1464 (2) 0.7456 (3) 0.0503 (6)
H6A 0.7396 1.0677 0.7662 0.060*
C7 0.62150 (12) 1.08377 (18) 0.6306 (3) 0.0402 (5)
C8 0.34750 (10) 0.31988 (18) 0.5241 (2) 0.0349 (4)
C9 0.34941 (10) 0.20060 (18) 0.5500 (2) 0.0389 (5)
C10 0.30020 (12) 0.1256 (2) 0.4960 (3) 0.0506 (6)
H10A 0.3033 0.0453 0.5132 0.061*
C11 0.24651 (13) 0.1707 (2) 0.4167 (3) 0.0581 (7)
H11A 0.2130 0.1209 0.3808 0.070*
C12 0.24255 (13) 0.2890 (3) 0.3909 (3) 0.0582 (6)
H12A 0.2061 0.3197 0.3381 0.070*
C13 0.29285 (12) 0.3629 (2) 0.4434 (3) 0.0480 (6)
H13A 0.2900 0.4429 0.4243 0.058*
C14 0.39949 (10) 0.40479 (18) 0.5813 (3) 0.0390 (5)
C15 0.49080 (17) 0.8594 (2) 0.5144 (3) 0.0643 (7)
H15A 0.5158 0.9018 0.4387 0.077*
H15B 0.4501 0.9033 0.5372 0.077*
C16 0.47206 (16) 0.7375 (2) 0.4566 (3) 0.0635 (8)
H16A 0.4238 0.7335 0.4375 0.076*
H16B 0.4957 0.7219 0.3640 0.076*
C17 0.49289 (16) 0.7947 (2) 0.7703 (3) 0.0612 (7)
H17A 0.4571 0.8479 0.8003 0.073*
H17B 0.5218 0.7807 0.8557 0.073*
C18 0.46232 (14) 0.6791 (2) 0.7171 (3) 0.0584 (7)
H18A 0.4724 0.6173 0.7881 0.070*
H18B 0.4136 0.6865 0.7095 0.070*
C19 0.59035 (12) 0.7722 (2) 0.6143 (4) 0.0605 (7)
H19A 0.6217 0.7717 0.6974 0.073*
H19B 0.6139 0.8028 0.5278 0.073*
C20 0.56618 (12) 0.6470 (2) 0.5826 (4) 0.0594 (7)
H20A 0.5861 0.6185 0.4906 0.071*
H20B 0.5798 0.5951 0.6628 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0553 (3) 0.0404 (3) 0.0615 (4) 0.0067 (2) −0.0201 (3) −0.0033 (3)
Cl2 0.0831 (5) 0.0419 (3) 0.0725 (5) 0.0129 (3) −0.0271 (4) −0.0006 (3)
O1 0.0751 (11) 0.0435 (10) 0.0480 (10) −0.0240 (8) 0.0158 (8) −0.0078 (8)
O2 0.1056 (15) 0.0635 (12) 0.0456 (10) −0.0416 (11) 0.0024 (10) −0.0066 (9)
O3 0.0660 (10) 0.0450 (10) 0.0518 (10) −0.0245 (8) 0.0108 (8) −0.0083 (8)
O4 0.0916 (14) 0.0583 (12) 0.0459 (10) −0.0319 (10) −0.0071 (10) −0.0053 (9)
N1 0.0452 (10) 0.0237 (9) 0.0365 (9) −0.0071 (6) 0.0028 (8) −0.0031 (8)
N2 0.0507 (10) 0.0275 (9) 0.0367 (9) −0.0115 (7) 0.0034 (9) −0.0037 (8)
C1 0.0422 (11) 0.0312 (10) 0.0339 (10) −0.0038 (8) 0.0013 (8) 0.0011 (9)
C2 0.0407 (11) 0.0314 (11) 0.0339 (10) −0.0006 (8) −0.0050 (9) −0.0029 (9)
C3 0.0535 (13) 0.0293 (11) 0.0548 (14) −0.0077 (9) −0.0042 (11) −0.0029 (10)
C4 0.0486 (14) 0.0515 (16) 0.0722 (18) −0.0153 (11) −0.0054 (13) −0.0106 (13)
C5 0.0471 (13) 0.0652 (18) 0.0646 (16) 0.0005 (12) −0.0138 (12) 0.0029 (14)
C6 0.0558 (14) 0.0389 (13) 0.0563 (15) 0.0030 (10) −0.0084 (12) 0.0079 (11)
C7 0.0549 (12) 0.0247 (11) 0.0410 (12) −0.0012 (9) −0.0017 (10) −0.0003 (9)
C8 0.0369 (10) 0.0334 (11) 0.0344 (10) −0.0019 (8) 0.0037 (8) 0.0010 (9)
C9 0.0423 (11) 0.0347 (11) 0.0397 (12) −0.0015 (9) 0.0020 (9) −0.0046 (10)
C10 0.0596 (15) 0.0373 (12) 0.0549 (14) −0.0141 (11) 0.0100 (12) −0.0085 (11)
C11 0.0412 (12) 0.0677 (17) 0.0655 (16) −0.0144 (14) −0.0008 (12) −0.0238 (14)
C12 0.0422 (12) 0.0730 (18) 0.0593 (14) 0.0050 (14) −0.0099 (11) −0.0093 (15)
C13 0.0540 (13) 0.0431 (14) 0.0468 (13) 0.0025 (11) −0.0040 (11) 0.0005 (10)
C14 0.0458 (11) 0.0274 (11) 0.0438 (12) −0.0015 (9) −0.0034 (11) −0.0028 (10)
C15 0.101 (2) 0.0358 (14) 0.0562 (15) 0.0020 (14) −0.0241 (15) 0.0025 (12)
C16 0.091 (2) 0.0486 (16) 0.0506 (13) −0.0154 (14) −0.0283 (14) 0.0028 (12)
C17 0.0835 (18) 0.0515 (15) 0.0488 (13) −0.0258 (14) 0.0192 (13) −0.0146 (12)
C18 0.0752 (18) 0.0469 (15) 0.0530 (14) −0.0230 (13) 0.0240 (13) −0.0150 (12)
C19 0.0451 (13) 0.0421 (14) 0.094 (2) −0.0066 (10) 0.0046 (12) −0.0102 (14)
C20 0.0556 (14) 0.0427 (14) 0.0798 (17) 0.0033 (11) 0.0064 (15) −0.0115 (14)

Geometric parameters (Å, °)

Cl1—C2 1.738 (2) C8—C13 1.390 (3)
Cl2—C9 1.742 (2) C8—C14 1.502 (3)
O1—C7 1.273 (3) C9—C10 1.383 (3)
O2—C7 1.213 (3) C10—C11 1.378 (4)
O3—C14 1.266 (3) C10—H10A 0.930
O4—C14 1.228 (3) C11—C12 1.370 (4)
N1—C17 1.464 (3) C11—H11A 0.930
N1—C19 1.465 (3) C12—C13 1.386 (4)
N1—C15 1.472 (3) C12—H12A 0.930
N1—H1A 0.910 C13—H13A 0.930
N2—C16 1.480 (3) C15—C16 1.529 (4)
N2—C18 1.480 (3) C15—H15A 0.970
N2—C20 1.488 (3) C15—H15B 0.970
N2—H2A 0.910 C16—H16A 0.970
C1—C2 1.380 (3) C16—H16B 0.970
C1—C6 1.385 (3) C17—C18 1.526 (3)
C1—C7 1.509 (3) C17—H17A 0.970
C2—C3 1.385 (3) C17—H17B 0.970
C3—C4 1.378 (4) C18—H18A 0.970
C3—H3A 0.930 C18—H18B 0.970
C4—C5 1.381 (4) C19—C20 1.531 (3)
C4—H4A 0.930 C19—H19A 0.970
C5—C6 1.388 (4) C19—H19B 0.970
C5—H5A 0.930 C20—H20A 0.970
C6—H6A 0.930 C20—H20B 0.970
C8—C9 1.380 (3)
C17—N1—C19 109.7 (2) C11—C12—C13 119.9 (2)
C17—N1—C15 110.5 (2) C11—C12—H12A 120.0
C19—N1—C15 108.3 (2) C13—C12—H12A 120.0
C17—N1—H1A 109.4 C12—C13—C8 121.4 (2)
C19—N1—H1A 109.4 C12—C13—H13A 119.3
C15—N1—H1A 109.4 C8—C13—H13A 119.3
C16—N2—C18 110.9 (2) O4—C14—O3 125.4 (2)
C16—N2—C20 108.5 (2) O4—C14—C8 119.2 (2)
C18—N2—C20 108.6 (2) O3—C14—C8 115.4 (2)
C16—N2—H2A 109.6 N1—C15—C16 109.28 (19)
C18—N2—H2A 109.6 N1—C15—H15A 109.8
C20—N2—H2A 109.6 C16—C15—H15A 109.8
C2—C1—C6 117.32 (19) N1—C15—H15B 109.8
C2—C1—C7 122.53 (19) C16—C15—H15B 109.8
C6—C1—C7 120.10 (19) H15A—C15—H15B 108.3
C1—C2—C3 121.9 (2) N2—C16—C15 108.9 (2)
C1—C2—Cl1 119.41 (15) N2—C16—H16A 109.9
C3—C2—Cl1 118.65 (16) C15—C16—H16A 109.9
C4—C3—C2 119.4 (2) N2—C16—H16B 109.9
C4—C3—H3A 120.3 C15—C16—H16B 109.9
C2—C3—H3A 120.3 H16A—C16—H16B 108.3
C3—C4—C5 120.4 (2) N1—C17—C18 109.5 (2)
C3—C4—H4A 119.8 N1—C17—H17A 109.8
C5—C4—H4A 119.8 C18—C17—H17A 109.8
C4—C5—C6 118.9 (2) N1—C17—H17B 109.8
C4—C5—H5A 120.6 C18—C17—H17B 109.8
C6—C5—H5A 120.6 H17A—C17—H17B 108.2
C1—C6—C5 122.1 (2) N2—C18—C17 109.06 (19)
C1—C6—H6A 119.0 N2—C18—H18A 109.9
C5—C6—H6A 119.0 C17—C18—H18A 109.9
O2—C7—O1 124.7 (2) N2—C18—H18B 109.9
O2—C7—C1 120.2 (2) C17—C18—H18B 109.9
O1—C7—C1 115.07 (19) H18A—C18—H18B 108.3
C9—C8—C13 117.1 (2) N1—C19—C20 109.92 (18)
C9—C8—C14 123.97 (19) N1—C19—H19A 109.7
C13—C8—C14 118.9 (2) C20—C19—H19A 109.7
C8—C9—C10 122.1 (2) N1—C19—H19B 109.7
C8—C9—Cl2 119.51 (16) C20—C19—H19B 109.7
C10—C9—Cl2 118.36 (18) H19A—C19—H19B 108.2
C11—C10—C9 119.5 (2) N2—C20—C19 108.11 (18)
C11—C10—H10A 120.3 N2—C20—H20A 110.1
C9—C10—H10A 120.3 C19—C20—H20A 110.1
C12—C11—C10 119.9 (2) N2—C20—H20B 110.1
C12—C11—H11A 120.0 C19—C20—H20B 110.1
C10—C11—H11A 120.0 H20A—C20—H20B 108.4
C6—C1—C2—C3 1.3 (3) C11—C12—C13—C8 −0.7 (4)
C7—C1—C2—C3 −176.0 (2) C9—C8—C13—C12 −0.2 (3)
C6—C1—C2—Cl1 −177.17 (17) C14—C8—C13—C12 −178.5 (2)
C7—C1—C2—Cl1 5.6 (3) C9—C8—C14—O4 −65.8 (3)
C1—C2—C3—C4 −0.5 (3) C13—C8—C14—O4 112.4 (3)
Cl1—C2—C3—C4 177.9 (2) C9—C8—C14—O3 116.1 (2)
C2—C3—C4—C5 −0.8 (4) C13—C8—C14—O3 −65.7 (3)
C3—C4—C5—C6 1.2 (4) C17—N1—C15—C16 −65.6 (3)
C2—C1—C6—C5 −0.8 (4) C19—N1—C15—C16 54.6 (3)
C7—C1—C6—C5 176.6 (2) C18—N2—C16—C15 52.6 (3)
C4—C5—C6—C1 −0.4 (4) C20—N2—C16—C15 −66.6 (3)
C2—C1—C7—O2 75.5 (3) N1—C15—C16—N2 10.2 (3)
C6—C1—C7—O2 −101.7 (3) C19—N1—C17—C18 −65.0 (3)
C2—C1—C7—O1 −106.1 (2) C15—N1—C17—C18 54.4 (3)
C6—C1—C7—O1 76.7 (3) C16—N2—C18—C17 −63.8 (3)
C13—C8—C9—C10 1.3 (3) C20—N2—C18—C17 55.4 (3)
C14—C8—C9—C10 179.6 (2) N1—C17—C18—N2 8.7 (3)
C13—C8—C9—Cl2 179.07 (17) C17—N1—C19—C20 53.6 (3)
C14—C8—C9—Cl2 −2.7 (3) C15—N1—C19—C20 −67.1 (3)
C8—C9—C10—C11 −1.5 (4) C16—N2—C20—C19 54.3 (3)
Cl2—C9—C10—C11 −179.29 (19) C18—N2—C20—C19 −66.4 (3)
C9—C10—C11—C12 0.5 (4) N1—C19—C20—N2 10.7 (3)
C10—C11—C12—C13 0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.91 1.65 2.556 (2) 170
N2—H2A···O3 0.91 1.69 2.587 (2) 169

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2155).

References

  1. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker–Nonius BV, Delft, The Netherlands.
  3. Burchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2000). Acta Cryst. C56, 1126–1128. [DOI] [PubMed]
  4. Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001). Acta Cryst. B57, 329–338. [DOI] [PubMed]
  5. Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201–212. [DOI] [PubMed]
  6. Ferguson, G. & Sim, G. A. (1961). Acta Cryst.14, 1262–1270.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Meehan, P. R., Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1997). Acta Cryst. C53, 628–631.
  9. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020096/bx2155sup1.cif

e-64-o1416-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020096/bx2155Isup2.hkl

e-64-o1416-Isup2.hkl (173.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES