Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):o1440. doi: 10.1107/S1600536808020631

(E)-3-(3,4-Dimethoxy­phen­yl)-1-(2-thien­yl)prop-2-en-1-one

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, P S Patil b, S M Dharmaprakash b
PMCID: PMC2962071  PMID: 21203155

Abstract

The title compound, C15H14O3S, has two symmetry-independent mol­ecules in the asymmetric unit with almost identical geometry. The dihedral angle between the benzene and thio­phene rings is 1.61 (11)° in one mol­ecule and 7.21 (11)° in the other. In both mol­ecules, C—H⋯O hydrogen bonds generate rings of graph-set motif S(5). The crystal structure is stabilized by C—H⋯O hydrogen bonds, C—H⋯π inter­actions and π–π inter­actions involving the benzene and thio­phene rings, with centroid–centroid distances of 3.5249 (13) and 3.6057 (13) Å.

Related literature

For related literature on the biological and non-linear optical properties of chalcone derivatives, see: Agrinskaya et al. (1999); Chopra et al. (2007); Patil et al. (2006); Patil, Ng et al. (2007); Patil, Fun et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). graphic file with name e-64-o1440-scheme1.jpg

Experimental

Crystal data

  • C15H14O3S

  • M r = 274.32

  • Monoclinic, Inline graphic

  • a = 12.1509 (3) Å

  • b = 14.3118 (3) Å

  • c = 16.3692 (4) Å

  • β = 106.570 (2)°

  • V = 2728.41 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.60 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.871, T max = 0.974

  • 31879 measured reflections

  • 7997 independent reflections

  • 4723 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.158

  • S = 1.07

  • 7997 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020631/ci2626sup1.cif

e-64-o1440-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020631/ci2626Isup2.hkl

e-64-o1440-Isup2.hkl (383.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7AA⋯O1A 0.93 2.43 2.792 (3) 103
C1B—H1BA⋯O1Ai 0.93 2.36 3.261 (3) 162
C7B—H7BA⋯O1B 0.93 2.47 2.816 (3) 102
C14B—H14F⋯O1Bii 0.96 2.53 3.401 (3) 151
C15A—H15ACg1iii 0.96 2.92 3.616 (3) 130
C10A—H10ACg3iv 0.93 2.84 3.636 (3) 144
C3A—H3AACg4 0.93 2.79 3.370 (3) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1, Cg3 and Cg4 are the centroids of the S1A/C1A–C4A, S1B/C1B–C4B and C8B–C13B rings, respectively.

Acknowledgments

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The synthesis and structural studies of chalcone derivatives have been of immense interest because of their biological as well as their increasingly important nonlinear optical properties (Agrinskaya et al., 1999; Chopra et al. 2007). We have previously reported the crystal structures of D–π–A type chalcone derivatives (Patil et al.. 2006; Patil, Ng et al., 2007; Patil, Fun et al., 2007). In continuation of our interest in these compounds, we report herein the crystal structure of the title compound, (I).

There are two independent molecules (A and B) in the asymmetric unit of (I), with similar geometries (Fig. 1). The bond lengths and angles are found to have normal values (Allen et al., 1987). The thiophene rings in both the molecules are planar, with a maximum deviation of 0.002 (3) Å for atom C2A and -0.007 (3) Å for atom C3B. The dihedral angle between the benzene and thiophene rings is 1.61 (11)° in molecule A and 7.21 (11)° in molecule B. In each of the independent molecule, an intramolecular C—H···O hydrogen bond generates an S(5) ring motif (Bernstein et al., 1995).

The crystal structure is consolidated by weak C—H···O and C—H···π interactions (Table 1). The packing is further strengthened by π–π interactions between the S1A/C1A–C4A (centroid Cg1) and C8A–C13A (centroid Cg2) rings [Cg1···Cg2i = 3.5249 (13) Å] and between the S1B/C1B–C4B (centroid Cg3) and C8B–C13B (centroid Cg4) rings [Cg3···Cg4ii = 3.6057 (13) Å] [symmetry codes: (i) -x, 1-y, -z; (ii) -x, 1-y, -z].

Experimental

The title compound was synthesized by the condensation of 3,4-dimethoxybenzaldehyde (0.01 mol, 1.66 g) with 2-acetylthiophene (0.01 mol, 1.07 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 6 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. The compound was recrystallized from acetone.

Refinement

H atoms were positioned geometrically [C-H = 0.93-0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H14O3S F000 = 1152
Mr = 274.32 Dx = 1.336 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3182 reflections
a = 12.1509 (3) Å θ = 2.3–22.9º
b = 14.3118 (3) Å µ = 0.24 mm1
c = 16.3692 (4) Å T = 100.0 (1) K
β = 106.570 (2)º Needle, white
V = 2728.41 (11) Å3 0.60 × 0.17 × 0.11 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7997 independent reflections
Radiation source: fine-focus sealed tube 4723 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.074
T = 100.0(1) K θmax = 30.1º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −16→17
Tmin = 0.871, Tmax = 0.974 k = −20→20
31879 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.158   w = 1/[σ2(Fo2) + (0.0645P)2 + 0.0849P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
7997 reflections Δρmax = 0.46 e Å3
347 parameters Δρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.30263 (5) 0.34458 (4) 0.21155 (4) 0.03061 (17)
O1A 0.29234 (14) 0.52178 (12) 0.12000 (11) 0.0341 (4)
O2A −0.29137 (13) 0.76488 (11) −0.01772 (10) 0.0271 (4)
O3A −0.23198 (13) 0.90679 (11) −0.08963 (10) 0.0263 (4)
C1A 0.2263 (2) 0.26572 (18) 0.24872 (16) 0.0347 (6)
H1AA 0.2582 0.2124 0.2787 0.042*
C2A 0.1135 (2) 0.28805 (18) 0.23049 (18) 0.0381 (6)
H2AA 0.0602 0.2516 0.2470 0.046*
C3A 0.08511 (19) 0.37196 (15) 0.18408 (14) 0.0241 (5)
H3AA 0.0117 0.3975 0.1660 0.029*
C4A 0.18303 (19) 0.41151 (16) 0.16895 (14) 0.0254 (5)
C5A 0.1974 (2) 0.49958 (16) 0.12684 (14) 0.0261 (5)
C6A 0.09567 (19) 0.56023 (16) 0.09447 (14) 0.0276 (5)
H6AA 0.0244 0.5411 0.0987 0.033*
C7A 0.1065 (2) 0.64255 (17) 0.05911 (15) 0.0294 (5)
H7AA 0.1800 0.6572 0.0565 0.035*
C8A 0.01813 (19) 0.71264 (17) 0.02396 (14) 0.0273 (5)
C9A 0.0492 (2) 0.79240 (17) −0.01259 (15) 0.0302 (5)
H9AA 0.1255 0.8011 −0.0114 0.036*
C10A −0.03157 (19) 0.85911 (17) −0.05077 (14) 0.0279 (5)
H10A −0.0096 0.9119 −0.0753 0.034*
C11A −0.14488 (19) 0.84704 (16) −0.05229 (13) 0.0241 (5)
C12A −0.17800 (18) 0.76786 (16) −0.01398 (14) 0.0228 (5)
C13A −0.09658 (19) 0.70150 (16) 0.02383 (14) 0.0248 (5)
H13A −0.1181 0.6492 0.0493 0.030*
C14A −0.3308 (2) 0.67985 (16) 0.01146 (17) 0.0321 (6)
H14A −0.4124 0.6830 0.0020 0.048*
H14B −0.2937 0.6720 0.0712 0.048*
H14C −0.3127 0.6278 −0.0194 0.048*
C15A −0.2024 (2) 0.98748 (17) −0.13146 (16) 0.0323 (6)
H15A −0.2698 1.0247 −0.1547 0.048*
H15B −0.1719 0.9677 −0.1766 0.048*
H15C −0.1459 1.0238 −0.0910 0.048*
S1B 0.37037 (5) 0.38880 (4) 0.72047 (4) 0.03122 (17)
O1B 0.16770 (14) 0.30240 (11) 0.59734 (11) 0.0326 (4)
O2B −0.10219 (14) 0.60874 (11) 0.21110 (10) 0.0298 (4)
O3B −0.24951 (13) 0.49172 (11) 0.12281 (10) 0.0307 (4)
C1B 0.45590 (19) 0.48496 (18) 0.73969 (15) 0.0318 (6)
H1BA 0.5199 0.4913 0.7868 0.038*
C2B 0.42056 (19) 0.55139 (17) 0.67877 (15) 0.0293 (5)
H2BA 0.4578 0.6082 0.6791 0.035*
C3B 0.32112 (18) 0.52442 (15) 0.61500 (14) 0.0236 (5)
H3BA 0.2847 0.5621 0.5690 0.028*
C4B 0.28323 (18) 0.43643 (15) 0.62777 (14) 0.0230 (5)
C5B 0.18737 (18) 0.38180 (16) 0.57549 (14) 0.0240 (5)
C6B 0.11733 (18) 0.42482 (16) 0.49650 (14) 0.0240 (5)
H6BA 0.1316 0.4863 0.4842 0.029*
C7B 0.03331 (19) 0.37724 (16) 0.44176 (15) 0.0262 (5)
H7BA 0.0214 0.3165 0.4577 0.031*
C8B −0.04199 (18) 0.40867 (16) 0.36023 (14) 0.0236 (5)
C9B −0.12424 (19) 0.34745 (16) 0.31244 (14) 0.0254 (5)
H9BA −0.1315 0.2884 0.3340 0.030*
C10B −0.19590 (19) 0.37269 (16) 0.23295 (14) 0.0249 (5)
H10B −0.2502 0.3307 0.2018 0.030*
C11B −0.18609 (18) 0.45996 (16) 0.20059 (14) 0.0237 (5)
C12B −0.10419 (18) 0.52376 (15) 0.24885 (14) 0.0218 (5)
C13B −0.03375 (18) 0.49828 (16) 0.32695 (14) 0.0231 (5)
H13B 0.0200 0.5406 0.3583 0.028*
C14B −0.0190 (2) 0.67467 (17) 0.25647 (16) 0.0336 (6)
H14D −0.0230 0.7300 0.2226 0.050*
H14E 0.0563 0.6478 0.2683 0.050*
H14F −0.0345 0.6906 0.3091 0.050*
C15B −0.3363 (2) 0.43030 (18) 0.07416 (16) 0.0374 (6)
H15D −0.3730 0.4583 0.0199 0.056*
H15E −0.3923 0.4193 0.1043 0.056*
H15F −0.3020 0.3720 0.0656 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0259 (3) 0.0293 (3) 0.0321 (3) 0.0024 (2) 0.0008 (2) −0.0001 (3)
O1A 0.0258 (9) 0.0367 (10) 0.0373 (10) 0.0039 (7) 0.0047 (7) 0.0070 (8)
O2A 0.0241 (8) 0.0226 (9) 0.0342 (9) 0.0016 (7) 0.0076 (7) 0.0018 (7)
O3A 0.0254 (8) 0.0255 (9) 0.0270 (9) 0.0027 (7) 0.0060 (7) 0.0050 (7)
C1A 0.0423 (15) 0.0250 (13) 0.0364 (15) 0.0033 (11) 0.0104 (12) −0.0002 (11)
C2A 0.0387 (15) 0.0299 (15) 0.0513 (17) −0.0063 (11) 0.0219 (13) −0.0096 (13)
C3A 0.0225 (11) 0.0194 (12) 0.0285 (12) 0.0018 (9) 0.0041 (9) −0.0080 (10)
C4A 0.0240 (11) 0.0258 (13) 0.0236 (12) 0.0038 (9) 0.0021 (9) −0.0081 (10)
C5A 0.0283 (12) 0.0251 (13) 0.0205 (11) 0.0043 (10) 0.0001 (9) −0.0052 (10)
C6A 0.0247 (11) 0.0285 (14) 0.0261 (12) 0.0042 (10) 0.0015 (9) −0.0030 (10)
C7A 0.0256 (12) 0.0331 (14) 0.0261 (13) 0.0038 (10) 0.0017 (10) −0.0016 (11)
C8A 0.0245 (11) 0.0309 (14) 0.0214 (12) 0.0037 (10) −0.0015 (9) −0.0015 (10)
C9A 0.0237 (12) 0.0369 (15) 0.0271 (13) 0.0002 (10) 0.0027 (10) 0.0032 (11)
C10A 0.0276 (12) 0.0289 (13) 0.0251 (12) −0.0016 (10) 0.0040 (10) 0.0036 (10)
C11A 0.0262 (11) 0.0273 (13) 0.0157 (11) 0.0042 (10) 0.0009 (9) −0.0006 (9)
C12A 0.0229 (11) 0.0249 (12) 0.0203 (11) 0.0015 (9) 0.0054 (9) −0.0034 (9)
C13A 0.0300 (12) 0.0215 (12) 0.0220 (12) 0.0008 (9) 0.0059 (9) −0.0002 (9)
C14A 0.0343 (13) 0.0246 (13) 0.0423 (15) −0.0019 (10) 0.0185 (12) 0.0014 (11)
C15A 0.0313 (13) 0.0298 (14) 0.0351 (14) 0.0028 (10) 0.0082 (11) 0.0120 (11)
S1B 0.0260 (3) 0.0321 (4) 0.0313 (3) 0.0046 (2) 0.0013 (2) 0.0055 (3)
O1B 0.0321 (9) 0.0229 (9) 0.0387 (10) −0.0015 (7) 0.0036 (8) 0.0055 (8)
O2B 0.0342 (9) 0.0224 (9) 0.0284 (9) −0.0067 (7) 0.0017 (7) 0.0020 (7)
O3B 0.0332 (9) 0.0256 (9) 0.0260 (9) −0.0052 (7) −0.0034 (7) 0.0010 (7)
C1B 0.0221 (11) 0.0390 (15) 0.0312 (13) 0.0035 (10) 0.0027 (10) −0.0071 (12)
C2B 0.0239 (11) 0.0277 (13) 0.0344 (13) −0.0022 (10) 0.0054 (10) −0.0032 (11)
C3B 0.0219 (11) 0.0222 (12) 0.0243 (12) 0.0016 (9) 0.0027 (9) 0.0017 (10)
C4B 0.0227 (11) 0.0224 (12) 0.0233 (12) 0.0032 (9) 0.0058 (9) −0.0011 (9)
C5B 0.0236 (11) 0.0230 (12) 0.0263 (12) 0.0019 (9) 0.0083 (9) −0.0018 (10)
C6B 0.0253 (11) 0.0200 (12) 0.0253 (12) −0.0010 (9) 0.0048 (9) 0.0014 (9)
C7B 0.0263 (12) 0.0198 (12) 0.0315 (13) 0.0013 (9) 0.0068 (10) 0.0034 (10)
C8B 0.0225 (11) 0.0257 (13) 0.0220 (11) −0.0024 (9) 0.0053 (9) −0.0029 (9)
C9B 0.0262 (11) 0.0233 (12) 0.0251 (12) −0.0024 (9) 0.0048 (9) 0.0001 (10)
C10B 0.0240 (11) 0.0211 (12) 0.0274 (12) −0.0037 (9) 0.0036 (9) −0.0055 (10)
C11B 0.0229 (11) 0.0239 (12) 0.0218 (11) 0.0003 (9) 0.0025 (9) −0.0007 (10)
C12B 0.0247 (11) 0.0164 (11) 0.0255 (12) −0.0007 (9) 0.0091 (9) 0.0014 (9)
C13B 0.0229 (11) 0.0214 (12) 0.0240 (12) −0.0037 (9) 0.0052 (9) −0.0041 (9)
C14B 0.0400 (14) 0.0223 (13) 0.0343 (14) −0.0124 (11) 0.0041 (11) −0.0027 (11)
C15B 0.0413 (15) 0.0332 (15) 0.0284 (14) −0.0105 (12) −0.0051 (11) 0.0002 (11)

Geometric parameters (Å, °)

S1A—C1A 1.681 (3) S1B—C1B 1.699 (3)
S1A—C4A 1.714 (2) S1B—C4B 1.724 (2)
O1A—C5A 1.232 (3) O1B—C5B 1.235 (3)
O2A—C12A 1.362 (2) O2B—C12B 1.368 (3)
O2A—C14A 1.439 (3) O2B—C14B 1.426 (3)
O3A—C11A 1.362 (3) O3B—C11B 1.364 (3)
O3A—C15A 1.439 (3) O3B—C15B 1.429 (3)
C1A—C2A 1.355 (3) C1B—C2B 1.356 (3)
C1A—H1AA 0.93 C1B—H1BA 0.93
C2A—C3A 1.410 (3) C2B—C3B 1.407 (3)
C2A—H2AA 0.93 C2B—H2BA 0.93
C3A—C4A 1.402 (3) C3B—C4B 1.377 (3)
C3A—H3AA 0.93 C3B—H3BA 0.93
C4A—C5A 1.471 (3) C4B—C5B 1.460 (3)
C5A—C6A 1.479 (3) C5B—C6B 1.466 (3)
C6A—C7A 1.336 (3) C6B—C7B 1.337 (3)
C6A—H6AA 0.93 C6B—H6BA 0.93
C7A—C8A 1.462 (3) C7B—C8B 1.457 (3)
C7A—H7AA 0.93 C7B—H7BA 0.93
C8A—C9A 1.390 (3) C8B—C9B 1.390 (3)
C8A—C13A 1.402 (3) C8B—C13B 1.408 (3)
C9A—C10A 1.384 (3) C9B—C10B 1.391 (3)
C9A—H9AA 0.93 C9B—H9BA 0.93
C10A—C11A 1.381 (3) C10B—C11B 1.375 (3)
C10A—H10A 0.93 C10B—H10B 0.93
C11A—C12A 1.408 (3) C11B—C12B 1.414 (3)
C12A—C13A 1.384 (3) C12B—C13B 1.370 (3)
C13A—H13A 0.93 C13B—H13B 0.93
C14A—H14A 0.96 C14B—H14D 0.96
C14A—H14B 0.96 C14B—H14E 0.96
C14A—H14C 0.96 C14B—H14F 0.96
C15A—H15A 0.96 C15B—H15D 0.96
C15A—H15B 0.96 C15B—H15E 0.96
C15A—H15C 0.96 C15B—H15F 0.96
C1A—S1A—C4A 91.80 (12) C1B—S1B—C4B 91.86 (12)
C12A—O2A—C14A 116.11 (17) C12B—O2B—C14B 117.02 (18)
C11A—O3A—C15A 116.73 (17) C11B—O3B—C15B 116.49 (18)
C2A—C1A—S1A 112.9 (2) C2B—C1B—S1B 112.52 (18)
C2A—C1A—H1AA 123.5 C2B—C1B—H1BA 123.7
S1A—C1A—H1AA 123.5 S1B—C1B—H1BA 123.7
C1A—C2A—C3A 113.4 (2) C1B—C2B—C3B 112.2 (2)
C1A—C2A—H2AA 123.3 C1B—C2B—H2BA 123.9
C3A—C2A—H2AA 123.3 C3B—C2B—H2BA 123.9
C4A—C3A—C2A 110.4 (2) C4B—C3B—C2B 113.1 (2)
C4A—C3A—H3AA 124.8 C4B—C3B—H3BA 123.5
C2A—C3A—H3AA 124.8 C2B—C3B—H3BA 123.5
C3A—C4A—C5A 130.5 (2) C3B—C4B—C5B 130.2 (2)
C3A—C4A—S1A 111.49 (18) C3B—C4B—S1B 110.32 (17)
C5A—C4A—S1A 118.01 (16) C5B—C4B—S1B 119.42 (17)
O1A—C5A—C4A 120.2 (2) O1B—C5B—C4B 120.7 (2)
O1A—C5A—C6A 121.6 (2) O1B—C5B—C6B 122.0 (2)
C4A—C5A—C6A 118.2 (2) C4B—C5B—C6B 117.2 (2)
C7A—C6A—C5A 119.8 (2) C7B—C6B—C5B 121.2 (2)
C7A—C6A—H6AA 120.1 C7B—C6B—H6BA 119.4
C5A—C6A—H6AA 120.1 C5B—C6B—H6BA 119.4
C6A—C7A—C8A 128.6 (2) C6B—C7B—C8B 128.1 (2)
C6A—C7A—H7AA 115.7 C6B—C7B—H7BA 116.0
C8A—C7A—H7AA 115.7 C8B—C7B—H7BA 116.0
C9A—C8A—C13A 119.0 (2) C9B—C8B—C13B 118.4 (2)
C9A—C8A—C7A 118.3 (2) C9B—C8B—C7B 118.9 (2)
C13A—C8A—C7A 122.7 (2) C13B—C8B—C7B 122.7 (2)
C10A—C9A—C8A 121.1 (2) C8B—C9B—C10B 121.4 (2)
C10A—C9A—H9AA 119.5 C8B—C9B—H9BA 119.3
C8A—C9A—H9AA 119.5 C10B—C9B—H9BA 119.3
C11A—C10A—C9A 119.8 (2) C11B—C10B—C9B 119.7 (2)
C11A—C10A—H10A 120.1 C11B—C10B—H10B 120.1
C9A—C10A—H10A 120.1 C9B—C10B—H10B 120.1
O3A—C11A—C10A 124.9 (2) O3B—C11B—C10B 125.0 (2)
O3A—C11A—C12A 114.88 (19) O3B—C11B—C12B 115.24 (19)
C10A—C11A—C12A 120.2 (2) C10B—C11B—C12B 119.7 (2)
O2A—C12A—C13A 125.7 (2) O2B—C12B—C13B 124.9 (2)
O2A—C12A—C11A 114.77 (19) O2B—C12B—C11B 114.97 (19)
C13A—C12A—C11A 119.53 (19) C13B—C12B—C11B 120.2 (2)
C12A—C13A—C8A 120.4 (2) C12B—C13B—C8B 120.6 (2)
C12A—C13A—H13A 119.8 C12B—C13B—H13B 119.7
C8A—C13A—H13A 119.8 C8B—C13B—H13B 119.7
O2A—C14A—H14A 109.5 O2B—C14B—H14D 109.5
O2A—C14A—H14B 109.5 O2B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
O2A—C14A—H14C 109.5 O2B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
O3A—C15A—H15A 109.5 O3B—C15B—H15D 109.5
O3A—C15A—H15B 109.5 O3B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
O3A—C15A—H15C 109.5 O3B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
C4A—S1A—C1A—C2A −0.2 (2) C4B—S1B—C1B—C2B 0.18 (19)
S1A—C1A—C2A—C3A 0.3 (3) S1B—C1B—C2B—C3B 0.5 (3)
C1A—C2A—C3A—C4A −0.3 (3) C1B—C2B—C3B—C4B −1.1 (3)
C2A—C3A—C4A—C5A −177.2 (2) C2B—C3B—C4B—C5B −177.3 (2)
C2A—C3A—C4A—S1A 0.1 (2) C2B—C3B—C4B—S1B 1.2 (2)
C1A—S1A—C4A—C3A 0.04 (18) C1B—S1B—C4B—C3B −0.78 (17)
C1A—S1A—C4A—C5A 177.78 (18) C1B—S1B—C4B—C5B 177.88 (17)
C3A—C4A—C5A—O1A −180.0 (2) C3B—C4B—C5B—O1B 178.9 (2)
S1A—C4A—C5A—O1A 2.8 (3) S1B—C4B—C5B—O1B 0.6 (3)
C3A—C4A—C5A—C6A 0.8 (3) C3B—C4B—C5B—C6B −0.5 (3)
S1A—C4A—C5A—C6A −176.47 (16) S1B—C4B—C5B—C6B −178.83 (15)
O1A—C5A—C6A—C7A −2.0 (3) O1B—C5B—C6B—C7B −4.4 (3)
C4A—C5A—C6A—C7A 177.2 (2) C4B—C5B—C6B—C7B 175.0 (2)
C5A—C6A—C7A—C8A −179.6 (2) C5B—C6B—C7B—C8B −178.5 (2)
C6A—C7A—C8A—C9A −177.7 (2) C6B—C7B—C8B—C9B 179.7 (2)
C6A—C7A—C8A—C13A 0.7 (4) C6B—C7B—C8B—C13B 0.8 (4)
C13A—C8A—C9A—C10A −1.7 (3) C13B—C8B—C9B—C10B 1.1 (3)
C7A—C8A—C9A—C10A 176.7 (2) C7B—C8B—C9B—C10B −177.9 (2)
C8A—C9A—C10A—C11A 0.5 (4) C8B—C9B—C10B—C11B −0.2 (3)
C15A—O3A—C11A—C10A 1.0 (3) C15B—O3B—C11B—C10B 3.4 (3)
C15A—O3A—C11A—C12A −178.46 (19) C15B—O3B—C11B—C12B −177.40 (19)
C9A—C10A—C11A—O3A −178.4 (2) C9B—C10B—C11B—O3B 178.4 (2)
C9A—C10A—C11A—C12A 1.0 (3) C9B—C10B—C11B—C12B −0.8 (3)
C14A—O2A—C12A—C13A −7.8 (3) C14B—O2B—C12B—C13B 1.0 (3)
C14A—O2A—C12A—C11A 172.71 (19) C14B—O2B—C12B—C11B −178.52 (19)
O3A—C11A—C12A—O2A −2.1 (3) O3B—C11B—C12B—O2B 1.3 (3)
C10A—C11A—C12A—O2A 178.4 (2) C10B—C11B—C12B—O2B −179.50 (19)
O3A—C11A—C12A—C13A 178.34 (19) O3B—C11B—C12B—C13B −178.29 (18)
C10A—C11A—C12A—C13A −1.1 (3) C10B—C11B—C12B—C13B 1.0 (3)
O2A—C12A—C13A—C8A −179.7 (2) O2B—C12B—C13B—C8B −179.62 (19)
C11A—C12A—C13A—C8A −0.2 (3) C11B—C12B—C13B—C8B −0.1 (3)
C9A—C8A—C13A—C12A 1.6 (3) C9B—C8B—C13B—C12B −0.9 (3)
C7A—C8A—C13A—C12A −176.8 (2) C7B—C8B—C13B—C12B 178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7A—H7AA···O1A 0.93 2.43 2.792 (3) 103
C1B—H1BA···O1Ai 0.93 2.36 3.261 (3) 162
C7B—H7BA···O1B 0.93 2.47 2.816 (3) 102
C14B—H14F···O1Bii 0.96 2.53 3.401 (3) 151
C15A—H15A···Cg1iii 0.96 2.92 3.616 (3) 130
C10A—H10A···Cg3iv 0.93 2.84 3.636 (3) 144
C3A—H3AA···Cg4 0.93 2.79 3.370 (3) 122

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−3/2, −y+1/2, z−3/2; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2626).

References

  1. Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710. [DOI] [PubMed]
  6. Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  7. Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60.
  8. Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020631/ci2626sup1.cif

e-64-o1440-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020631/ci2626Isup2.hkl

e-64-o1440-Isup2.hkl (383.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES