Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):o1443. doi: 10.1107/S1600536808020771

1-[2-(3,4-Dichloro­phen­yl)-5-(3,4,5-trimethoxy­phen­yl)-2,3-dihydro-1,3,4-oxadiazol-3-yl]ethanone

Dao-Hang He a,*, Yong-Chuang Zhu a
PMCID: PMC2962074  PMID: 21203158

Abstract

The title compound, C19H18Cl2N2O5, was synthesized by the reaction of N′-(3,4-dichloro­benzyl­idene)-3,4,5-trimethoxy­benzo­hydrazide and acetic anhydride. The oxadiazole ring makes dihedral angles of 82.82 (7) and 9.92 (7)° with the 3,4-dichloro­benzene and the 3,4,5-trimethoxy­benzene ring planes, respectively. The crystal structure is stabilized by inter­molecular C—H⋯ O and C—H⋯ N hydrogen bonds. Intra­molecular C—H⋯O and C—H⋯N hydrogen bonds are also present.

Related literature

For related literature, see: Abdel et al. (2003); Abdel-Rahman & Farghaly (2004); Chai et al. (2002); Jin et al. (2006); Mohd et al. (2004).graphic file with name e-64-o1443-scheme1.jpg

Experimental

Crystal data

  • C19H18Cl2N2O5

  • M r = 425.25

  • Monoclinic, Inline graphic

  • a = 7.6743 (4) Å

  • b = 15.9516 (8) Å

  • c = 15.7483 (8) Å

  • β = 90.8940 (10)°

  • V = 1927.63 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 (2) K

  • 0.47 × 0.39 × 0.32 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.845, T max = 0.890

  • 10032 measured reflections

  • 4159 independent reflections

  • 3238 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.125

  • S = 1.04

  • 4159 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020771/wn2269sup1.cif

e-64-o1443-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020771/wn2269Isup2.hkl

e-64-o1443-Isup2.hkl (203.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4 0.95 2.43 2.772 (2) 101
C8—H8⋯O2i 1.00 2.56 3.184 (3) 121
C10—H10⋯O1ii 0.95 2.43 3.302 (3) 153
C13—H13⋯O5iii 0.95 2.53 3.426 (3) 156
C16—H16B⋯N1 0.98 2.42 2.839 (3) 105
C18—H18A⋯N1ii 0.98 2.53 3.468 (3) 160
C18—H18C⋯O3 0.98 2.36 2.916 (3) 116
C19—H19A⋯O5iv 0.98 2.58 3.233 (3) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Guangdong Provincial Natural Science Foundation of China (No. 04300531) for financial assistance.

supplementary crystallographic information

Comment

1,3,4-Oxadiazole derivatives are well known to possess a diverse range of bioactivities in the pharmaceutical and agrochemical fields; these include insecticidal, antibacterial, anticancer, and anti-inflammatory activities (Abdel et al., 2003; Abdel-Rahman & Farghaly, 2004; Chai et al., 2002; Mohd et al., 2004). Here we report the synthesis and crystal structure of a 1,3,4-oxadiazole derivative containing the 3,4,5-trimethoxyphenyl unit (Fig. 1).

The bond lengths and angles in the title compound are in good agreement with expected values. Though the C8 carbon of the oxadiazole ring is sp3 hybridized, the oxadiazole ring is essentially planar. The oxadiazole ring makes dihedral angles of 82.82 (7)° and 9.92 (7)° with the 3,4-dichlorobenzene and the 3,4,5-trimethoxybenzene ring planes, respectively. These angles are somewhat different from those in a similar crystal structure (Jin et al., 2006). The crystal structure exhibits intermolecular C—H··· O and C—H···N hydrogen bonds which stabilize the molecule. Intramolecular C—H···O and C—H···N hydrogen bonds are also present.

Experimental

N'-(3,4-Dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide (0.38 g, 1 mmol) in acetic anhydride (8 ml) was refluxed for 2 h until the starting material disappeared, as evidenced by TLC. The resulting cool mixture was then poured into cold water, after filtration. The residue was recrystallized by slow evaporation of a methanol solution.

Refinement

All H atoms were included in the refinement at idealized positions and refined as riding, with C—H = 0.95 (aromatic), 0.98 (methyl), 1.00Å (methine) and Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl, 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.

Crystal data

C19H18Cl2N2O5 F000 = 880
Mr = 425.25 Dx = 1.465 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5138 reflections
a = 7.6743 (4) Å θ = 2.6–27.1º
b = 15.9516 (8) Å µ = 0.37 mm1
c = 15.7483 (8) Å T = 173 (2) K
β = 90.8940 (10)º Block, colorless
V = 1927.63 (17) Å3 0.47 × 0.39 × 0.32 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 4159 independent reflections
Radiation source: fine-focus sealed tube 3238 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.025
T = 173(2) K θmax = 27.2º
ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003) h = −8→9
Tmin = 0.845, Tmax = 0.891 k = −20→18
10032 measured reflections l = −13→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.0625P)2 + 1.3473P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4159 reflections Δρmax = 0.34 e Å3
257 parameters Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29475 (7) 0.36125 (4) 0.89108 (4) 0.04132 (18)
Cl2 0.44596 (8) 0.54237 (4) 0.85758 (4) 0.03835 (17)
C1 0.7817 (3) 0.05267 (12) 0.99579 (13) 0.0233 (4)
C2 0.7051 (3) −0.00409 (13) 1.05104 (13) 0.0243 (4)
H2 0.6667 0.0136 1.1053 0.029*
C3 0.6857 (3) −0.08687 (12) 1.02552 (13) 0.0254 (4)
C4 0.7416 (3) −0.11303 (12) 0.94532 (13) 0.0250 (4)
C5 0.8160 (3) −0.05492 (13) 0.89080 (12) 0.0239 (4)
C6 0.8351 (3) 0.02847 (12) 0.91572 (13) 0.0245 (4)
H6 0.8842 0.0683 0.8782 0.029*
C7 0.8153 (3) 0.13859 (12) 1.02448 (13) 0.0229 (4)
C8 0.9032 (3) 0.27301 (12) 1.00923 (13) 0.0240 (4)
H8 1.0284 0.2903 1.0080 0.029*
C9 0.7883 (3) 0.33955 (12) 0.97007 (12) 0.0231 (4)
C10 0.6145 (3) 0.32243 (12) 0.95089 (13) 0.0248 (4)
H10 0.5676 0.2685 0.9619 0.030*
C11 0.5100 (3) 0.38450 (13) 0.91558 (13) 0.0262 (4)
C12 0.5775 (3) 0.46408 (12) 0.90009 (13) 0.0263 (4)
C13 0.7498 (3) 0.48130 (13) 0.91895 (14) 0.0297 (5)
H13 0.7963 0.5354 0.9081 0.036*
C14 0.8548 (3) 0.41901 (13) 0.95392 (13) 0.0268 (4)
H14 0.9735 0.4308 0.9670 0.032*
C15 0.9181 (3) 0.29242 (13) 1.16484 (14) 0.0297 (5)
C16 0.8863 (4) 0.25497 (16) 1.25067 (15) 0.0428 (6)
H16A 0.9930 0.2277 1.2717 0.064*
H16B 0.7925 0.2134 1.2461 0.064*
H16C 0.8525 0.2993 1.2902 0.064*
C17 0.5778 (3) −0.12792 (16) 1.16051 (15) 0.0383 (6)
H17A 0.6858 −0.1100 1.1892 0.058*
H17B 0.5312 −0.1774 1.1893 0.058*
H17C 0.4923 −0.0824 1.1623 0.058*
C18 0.6289 (3) −0.22110 (15) 0.85465 (16) 0.0368 (5)
H18A 0.5145 −0.1941 0.8580 0.055*
H18B 0.6143 −0.2821 0.8544 0.055*
H18C 0.6861 −0.2036 0.8024 0.055*
C19 0.9654 (3) −0.03053 (15) 0.76156 (14) 0.0351 (5)
H19A 0.8912 0.0169 0.7450 0.053*
H19B 1.0019 −0.0607 0.7106 0.053*
H19C 1.0685 −0.0098 0.7925 0.053*
N1 0.7969 (2) 0.16636 (10) 1.09988 (11) 0.0248 (4)
N2 0.8524 (2) 0.25043 (10) 1.09633 (10) 0.0251 (4)
O1 0.6131 (2) −0.14829 (9) 1.07411 (10) 0.0345 (4)
O2 0.7344 (2) −0.19688 (9) 0.92680 (10) 0.0354 (4)
O3 0.8701 (2) −0.08591 (9) 0.81492 (9) 0.0304 (3)
O4 0.87792 (19) 0.19385 (8) 0.96599 (9) 0.0265 (3)
O5 0.9955 (2) 0.35859 (10) 1.15404 (11) 0.0401 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0272 (3) 0.0402 (3) 0.0563 (4) −0.0036 (2) −0.0087 (2) 0.0089 (3)
Cl2 0.0433 (3) 0.0298 (3) 0.0419 (3) 0.0081 (2) −0.0035 (2) 0.0093 (2)
C1 0.0220 (9) 0.0187 (9) 0.0290 (10) 0.0012 (8) −0.0052 (8) 0.0011 (8)
C2 0.0229 (10) 0.0251 (10) 0.0249 (10) 0.0007 (8) −0.0009 (8) −0.0016 (8)
C3 0.0252 (10) 0.0206 (10) 0.0303 (11) −0.0032 (8) −0.0026 (8) 0.0056 (8)
C4 0.0283 (10) 0.0160 (9) 0.0307 (11) 0.0004 (8) −0.0043 (8) 0.0000 (8)
C5 0.0243 (10) 0.0225 (10) 0.0247 (10) 0.0030 (8) −0.0026 (8) −0.0024 (7)
C6 0.0255 (10) 0.0217 (10) 0.0261 (10) 0.0000 (8) −0.0034 (8) 0.0027 (8)
C7 0.0217 (9) 0.0210 (10) 0.0260 (10) 0.0009 (8) −0.0011 (7) 0.0024 (7)
C8 0.0276 (10) 0.0172 (9) 0.0273 (10) −0.0030 (8) 0.0015 (8) −0.0023 (7)
C9 0.0280 (10) 0.0194 (9) 0.0219 (9) 0.0003 (8) 0.0017 (8) −0.0018 (7)
C10 0.0277 (10) 0.0201 (10) 0.0266 (10) −0.0032 (8) 0.0012 (8) 0.0004 (8)
C11 0.0243 (10) 0.0283 (11) 0.0261 (10) −0.0029 (8) 0.0004 (8) 0.0007 (8)
C12 0.0328 (11) 0.0211 (10) 0.0250 (10) 0.0042 (8) 0.0020 (8) 0.0035 (8)
C13 0.0363 (12) 0.0201 (10) 0.0328 (11) −0.0040 (9) 0.0030 (9) 0.0025 (8)
C14 0.0257 (10) 0.0216 (10) 0.0332 (11) −0.0039 (8) 0.0016 (8) −0.0016 (8)
C15 0.0363 (12) 0.0215 (10) 0.0312 (11) 0.0032 (9) −0.0006 (9) −0.0070 (8)
C16 0.0668 (17) 0.0339 (13) 0.0277 (12) −0.0001 (12) −0.0001 (11) −0.0065 (10)
C17 0.0478 (14) 0.0373 (13) 0.0300 (12) −0.0120 (11) 0.0034 (10) 0.0064 (10)
C18 0.0350 (12) 0.0305 (12) 0.0448 (13) −0.0101 (10) −0.0005 (10) −0.0107 (10)
C19 0.0431 (13) 0.0345 (12) 0.0279 (11) −0.0098 (10) 0.0052 (9) −0.0017 (9)
N1 0.0291 (9) 0.0177 (8) 0.0277 (9) −0.0016 (7) −0.0018 (7) −0.0001 (7)
N2 0.0309 (9) 0.0199 (8) 0.0245 (9) −0.0015 (7) 0.0001 (7) −0.0013 (7)
O1 0.0480 (10) 0.0232 (8) 0.0325 (8) −0.0107 (7) 0.0041 (7) 0.0023 (6)
O2 0.0520 (10) 0.0185 (7) 0.0355 (9) −0.0018 (7) −0.0072 (7) −0.0029 (6)
O3 0.0388 (9) 0.0246 (8) 0.0278 (8) −0.0043 (6) 0.0048 (6) −0.0035 (6)
O4 0.0367 (8) 0.0168 (7) 0.0262 (7) −0.0013 (6) 0.0029 (6) −0.0010 (5)
O5 0.0531 (10) 0.0255 (8) 0.0416 (10) −0.0062 (7) −0.0027 (8) −0.0096 (7)

Geometric parameters (Å, °)

Cl1—C11 1.730 (2) C11—C12 1.394 (3)
Cl2—C12 1.734 (2) C12—C13 1.378 (3)
C1—C6 1.387 (3) C13—C14 1.388 (3)
C1—C2 1.392 (3) C13—H13 0.9500
C1—C7 1.465 (3) C14—H14 0.9500
C2—C3 1.388 (3) C15—O5 1.224 (3)
C2—H2 0.9500 C15—N2 1.360 (3)
C3—O1 1.367 (2) C15—C16 1.501 (3)
C3—C4 1.404 (3) C16—H16A 0.9800
C4—O2 1.370 (2) C16—H16B 0.9800
C4—C5 1.392 (3) C16—H16C 0.9800
C5—O3 1.364 (2) C17—O1 1.429 (3)
C5—C6 1.394 (3) C17—H17A 0.9800
C6—H6 0.9500 C17—H17B 0.9800
C7—N1 1.277 (3) C17—H17C 0.9800
C7—O4 1.368 (2) C18—O2 1.438 (3)
C8—O4 1.446 (2) C18—H18A 0.9800
C8—N2 1.476 (3) C18—H18B 0.9800
C8—C9 1.506 (3) C18—H18C 0.9800
C8—H8 1.0000 C19—O3 1.429 (3)
C9—C10 1.390 (3) C19—H19A 0.9800
C9—C14 1.391 (3) C19—H19B 0.9800
C10—C11 1.385 (3) C19—H19C 0.9800
C10—H10 0.9500 N1—N2 1.409 (2)
C6—C1—C2 121.40 (18) C12—C13—H13 120.3
C6—C1—C7 119.20 (18) C14—C13—H13 120.3
C2—C1—C7 119.32 (18) C13—C14—C9 120.8 (2)
C3—C2—C1 118.83 (19) C13—C14—H14 119.6
C3—C2—H2 120.6 C9—C14—H14 119.6
C1—C2—H2 120.6 O5—C15—N2 119.3 (2)
O1—C3—C2 124.24 (19) O5—C15—C16 123.7 (2)
O1—C3—C4 115.06 (18) N2—C15—C16 117.0 (2)
C2—C3—C4 120.70 (18) C15—C16—H16A 109.5
O2—C4—C5 122.30 (19) C15—C16—H16B 109.5
O2—C4—C3 118.03 (18) H16A—C16—H16B 109.5
C5—C4—C3 119.42 (18) C15—C16—H16C 109.5
O3—C5—C4 115.61 (18) H16A—C16—H16C 109.5
O3—C5—C6 124.10 (19) H16B—C16—H16C 109.5
C4—C5—C6 120.27 (19) O1—C17—H17A 109.5
C1—C6—C5 119.37 (19) O1—C17—H17B 109.5
C1—C6—H6 120.3 H17A—C17—H17B 109.5
C5—C6—H6 120.3 O1—C17—H17C 109.5
N1—C7—O4 116.60 (17) H17A—C17—H17C 109.5
N1—C7—C1 126.14 (18) H17B—C17—H17C 109.5
O4—C7—C1 117.22 (17) O2—C18—H18A 109.5
O4—C8—N2 100.90 (14) O2—C18—H18B 109.5
O4—C8—C9 110.42 (16) H18A—C18—H18B 109.5
N2—C8—C9 113.01 (16) O2—C18—H18C 109.5
O4—C8—H8 110.7 H18A—C18—H18C 109.5
N2—C8—H8 110.7 H18B—C18—H18C 109.5
C9—C8—H8 110.7 O3—C19—H19A 109.5
C10—C9—C14 119.51 (18) O3—C19—H19B 109.5
C10—C9—C8 120.30 (18) H19A—C19—H19B 109.5
C14—C9—C8 120.18 (18) O3—C19—H19C 109.5
C11—C10—C9 119.63 (19) H19A—C19—H19C 109.5
C11—C10—H10 120.2 H19B—C19—H19C 109.5
C9—C10—H10 120.2 C7—N1—N2 104.79 (16)
C10—C11—C12 120.43 (19) C15—N2—N1 123.09 (17)
C10—C11—Cl1 118.75 (16) C15—N2—C8 121.12 (17)
C12—C11—Cl1 120.82 (16) N1—N2—C8 110.70 (15)
C13—C12—C11 120.13 (19) C3—O1—C17 117.06 (17)
C13—C12—Cl2 119.37 (16) C4—O2—C18 116.81 (17)
C11—C12—Cl2 120.49 (17) C5—O3—C19 117.18 (16)
C12—C13—C14 119.45 (19) C7—O4—C8 106.95 (15)
C6—C1—C2—C3 1.4 (3) C10—C11—C12—Cl2 −178.89 (16)
C7—C1—C2—C3 −175.26 (18) Cl1—C11—C12—Cl2 1.2 (3)
C1—C2—C3—O1 179.76 (19) C11—C12—C13—C14 −0.4 (3)
C1—C2—C3—C4 −0.2 (3) Cl2—C12—C13—C14 179.24 (16)
O1—C3—C4—O2 −6.1 (3) C12—C13—C14—C9 0.0 (3)
C2—C3—C4—O2 173.88 (18) C10—C9—C14—C13 0.0 (3)
O1—C3—C4—C5 179.51 (18) C8—C9—C14—C13 −179.09 (19)
C2—C3—C4—C5 −0.5 (3) O4—C7—N1—N2 −0.3 (2)
O2—C4—C5—O3 4.6 (3) C1—C7—N1—N2 177.36 (18)
C3—C4—C5—O3 178.68 (18) O5—C15—N2—N1 165.36 (19)
O2—C4—C5—C6 −174.01 (18) C16—C15—N2—N1 −16.2 (3)
C3—C4—C5—C6 0.1 (3) O5—C15—N2—C8 12.9 (3)
C2—C1—C6—C5 −1.8 (3) C16—C15—N2—C8 −168.66 (19)
C7—C1—C6—C5 174.89 (18) C7—N1—N2—C15 −153.3 (2)
O3—C5—C6—C1 −177.46 (18) C7—N1—N2—C8 1.6 (2)
C4—C5—C6—C1 1.0 (3) O4—C8—N2—C15 153.32 (18)
C6—C1—C7—N1 −169.31 (19) C9—C8—N2—C15 −88.8 (2)
C2—C1—C7—N1 7.4 (3) O4—C8—N2—N1 −2.2 (2)
C6—C1—C7—O4 8.3 (3) C9—C8—N2—N1 115.70 (18)
C2—C1—C7—O4 −174.95 (17) C2—C3—O1—C17 −9.0 (3)
O4—C8—C9—C10 45.1 (2) C4—C3—O1—C17 171.03 (19)
N2—C8—C9—C10 −67.1 (2) C5—C4—O2—C18 −65.1 (3)
O4—C8—C9—C14 −135.80 (19) C3—C4—O2—C18 120.8 (2)
N2—C8—C9—C14 112.0 (2) C4—C5—O3—C19 −172.83 (18)
C14—C9—C10—C11 0.3 (3) C6—C5—O3—C19 5.7 (3)
C8—C9—C10—C11 179.43 (18) N1—C7—O4—C8 −1.2 (2)
C9—C10—C11—C12 −0.7 (3) C1—C7—O4—C8 −179.02 (17)
C9—C10—C11—Cl1 179.22 (15) N2—C8—O4—C7 1.92 (19)
C10—C11—C12—C13 0.7 (3) C9—C8—O4—C7 −117.85 (17)
Cl1—C11—C12—C13 −179.17 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O4 0.95 2.43 2.772 (2) 101
C8—H8···O2i 1.00 2.56 3.184 (3) 121
C10—H10···O1ii 0.95 2.43 3.302 (3) 153
C13—H13···O5iii 0.95 2.53 3.426 (3) 156
C16—H16B···N1 0.98 2.42 2.839 (3) 105
C18—H18A···N1ii 0.98 2.53 3.468 (3) 160
C18—H18C···O3 0.98 2.36 2.916 (3) 116
C19—H19A···O5iv 0.98 2.58 3.233 (3) 124

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+2, −y+1, −z+2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2269).

References

  1. Abdel, K. M., Mohga, M. E. & Nasser, S. A. (2003). Molecules, 8, 744–755.
  2. Abdel-Rahman, A. H. & Farghaly, K. (2004). J. Chin. Chem. Soc.51, 147–156.
  3. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chai, B., Cao, S., Liu, H. D., Song, G. H. & Qian, X. H. (2002). Heterocycl. Commun.8, 601–606.
  6. Jin, L., Chen, J., Song, B., Chen, Z., Yang, S., Li, Q., Hu, D. & Xu, R. (2006). Bioorg. Med. Chem. Lett.16, 5036–5040. [DOI] [PubMed]
  7. Mohd, A., Khan, M. S. Y. & Zaman, M. S. (2004). Indian J. Chem. Sect. B, 43, 2189–2194.
  8. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020771/wn2269sup1.cif

e-64-o1443-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020771/wn2269Isup2.hkl

e-64-o1443-Isup2.hkl (203.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES