Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):o1445. doi: 10.1107/S1600536808018825

5-(4-Methyl-3-nitro­phen­yl)-1H-tetra­zole

Wei Dai a, Da-Wei Fu a,*
PMCID: PMC2962076  PMID: 21203160

Abstract

In the title compound, C8H7N5O2, the benzene ring makes a dihedral angle of 38.27 (11)° with the tetra­zole ring. The crystal structure is stabilized by N—H⋯N hydrogen bonds, forming an infinite one-dimensional chain parallel to the a axis.

Related literature

For the use of tetra­zole derivatives in coordination chemisty, see: Arp et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).graphic file with name e-64-o1445-scheme1.jpg

Experimental

Crystal data

  • C8H7N5O2

  • M r = 205.19

  • Monoclinic, Inline graphic

  • a = 4.9642 (10) Å

  • b = 16.982 (3) Å

  • c = 10.804 (2) Å

  • β = 100.71 (3)°

  • V = 894.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.971, T max = 0.977

  • 7013 measured reflections

  • 2039 independent reflections

  • 1330 reflections with I > 2σ(I)

  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.190

  • S = 1.08

  • 2039 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018825/dn2361sup1.cif

e-64-o1445-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018825/dn2361Isup2.hkl

e-64-o1445-Isup2.hkl (100.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.01 2.832 (3) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

In the past five years, our work have been focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002). We report here the crystal structure of the title compound, 5-(4-methyl-3-nitrophenyl)-2H-tetrazole, (Fig.1).

The benzene ring makes a dihedral angle of 38.27 (0.11) ° with the tetrazole ring owing to the C–C bond bridge which force the two rings to be twisted from each other. The bond distances and bond angles of the tetrazole rings are in the usual ranges (Wang et al., 2005; Arp et al. , 2000; Hu et al., 2007). The crystal packing is stabilized by N—H···N hydrogen bonds to form an infinite one-dimensional chain parallel to the a axis. (Table 1, Fig. 2).

Experimental

5-(4-methyl-3-nitrophenyl)-2H-tetrazole (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C–H = 0.9 Å (aromatic),0.96 Å(methyl) and N–H = 0.86 Å with Uiso(H) =1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing of the title compound showing the one dimensionnal hydrogen bondings network. Hydrogen atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code : (i) x-1, y, z]

Crystal data

C8H7N5O2 F(000) = 424
Mr = 205.19 Dx = 1.523 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2043 reflections
a = 4.9642 (10) Å θ = 3.1–27.5°
b = 16.982 (3) Å µ = 0.12 mm1
c = 10.804 (2) Å T = 298 K
β = 100.71 (3)° Block, colorless
V = 894.9 (3) Å3 0.25 × 0.18 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 2039 independent reflections
Radiation source: fine-focus sealed tube 1330 reflections with I > 2σ(I)
graphite Rint = 0.093
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −22→21
Tmin = 0.971, Tmax = 0.977 l = −13→14
7013 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075 H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.0553P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2039 reflections Δρmax = 0.32 e Å3
137 parameters Δρmin = −0.26 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.037 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0809 (4) 0.47072 (13) 0.8636 (2) 0.0355 (6)
H1A −0.0824 0.4579 0.8719 0.043*
N4 0.5077 (4) 0.46190 (13) 0.8535 (2) 0.0375 (6)
C1 0.2914 (5) 0.42106 (15) 0.8715 (2) 0.0300 (6)
C2 0.2791 (5) 0.33663 (15) 0.8959 (2) 0.0316 (6)
N2 0.1626 (5) 0.54380 (12) 0.8406 (2) 0.0429 (6)
N3 0.4204 (5) 0.53814 (13) 0.8340 (2) 0.0445 (6)
C3 0.1202 (5) 0.30784 (15) 0.9784 (2) 0.0346 (6)
H3A 0.0240 0.3423 1.0211 0.041*
C4 0.1057 (5) 0.22713 (16) 0.9969 (2) 0.0360 (7)
C7 0.4202 (6) 0.28333 (16) 0.8331 (3) 0.0380 (6)
H7A 0.5288 0.3016 0.7777 0.046*
C6 0.3991 (6) 0.20365 (16) 0.8530 (3) 0.0448 (7)
H6A 0.4927 0.1694 0.8089 0.054*
C5 0.2449 (6) 0.17202 (15) 0.9358 (3) 0.0423 (7)
O1 −0.1907 (5) 0.25440 (14) 1.1326 (2) 0.0687 (8)
O2 −0.0896 (5) 0.13387 (15) 1.1108 (2) 0.0781 (9)
N5 −0.0701 (5) 0.20355 (16) 1.0866 (2) 0.0468 (7)
C8 0.2416 (8) 0.08409 (18) 0.9527 (4) 0.0681 (10)
H8A 0.3551 0.0599 0.9006 0.102*
H8B 0.0571 0.0650 0.9289 0.102*
H8C 0.3103 0.0713 1.0393 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0248 (12) 0.0353 (12) 0.0489 (14) −0.0016 (9) 0.0130 (9) 0.0005 (9)
N4 0.0280 (12) 0.0381 (13) 0.0489 (15) −0.0015 (9) 0.0138 (9) 0.0055 (10)
C1 0.0237 (13) 0.0375 (14) 0.0308 (13) −0.0009 (10) 0.0101 (9) −0.0005 (10)
C2 0.0231 (13) 0.0376 (14) 0.0350 (15) 0.0014 (10) 0.0076 (10) −0.0001 (10)
N2 0.0352 (13) 0.0384 (14) 0.0569 (16) −0.0006 (10) 0.0135 (11) 0.0049 (11)
N3 0.0366 (14) 0.0415 (14) 0.0587 (16) −0.0041 (10) 0.0172 (11) 0.0038 (11)
C3 0.0295 (15) 0.0390 (15) 0.0374 (16) 0.0000 (11) 0.0120 (11) −0.0006 (11)
C4 0.0320 (15) 0.0399 (15) 0.0363 (15) −0.0035 (11) 0.0065 (11) 0.0057 (11)
C7 0.0349 (15) 0.0411 (15) 0.0406 (16) 0.0059 (11) 0.0141 (12) −0.0002 (12)
C6 0.0464 (18) 0.0422 (17) 0.0466 (18) 0.0123 (13) 0.0106 (13) −0.0044 (12)
C5 0.0426 (17) 0.0371 (16) 0.0442 (17) 0.0017 (12) 0.0005 (13) 0.0024 (12)
O1 0.0701 (17) 0.0762 (17) 0.0721 (17) −0.0033 (13) 0.0451 (13) 0.0098 (13)
O2 0.096 (2) 0.0572 (16) 0.087 (2) −0.0154 (12) 0.0304 (16) 0.0263 (13)
N5 0.0377 (15) 0.0574 (17) 0.0444 (15) −0.0108 (11) 0.0053 (11) 0.0132 (12)
C8 0.091 (3) 0.0377 (18) 0.074 (3) −0.0006 (17) 0.011 (2) 0.0031 (16)

Geometric parameters (Å, °)

N1—C1 1.333 (3) C4—N5 1.475 (3)
N1—N2 1.343 (3) C7—C6 1.377 (4)
N1—H1A 0.8600 C7—H7A 0.9300
N4—C1 1.323 (3) C6—C5 1.388 (4)
N4—N3 1.369 (3) C6—H6A 0.9300
C1—C2 1.461 (3) C5—C8 1.505 (4)
C2—C3 1.385 (3) O1—N5 1.209 (3)
C2—C7 1.395 (3) O2—N5 1.220 (3)
N2—N3 1.299 (3) C8—H8A 0.9600
C3—C4 1.389 (4) C8—H8B 0.9600
C3—H3A 0.9300 C8—H8C 0.9600
C4—C5 1.400 (4)
C1—N1—N2 109.7 (2) C6—C7—C2 120.1 (2)
C1—N1—H1A 125.2 C6—C7—H7A 119.9
N2—N1—H1A 125.2 C2—C7—H7A 119.9
C1—N4—N3 106.0 (2) C7—C6—C5 123.2 (3)
N4—C1—N1 107.9 (2) C7—C6—H6A 118.4
N4—C1—C2 127.1 (2) C5—C6—H6A 118.4
N1—C1—C2 125.0 (2) C6—C5—C4 115.1 (2)
C3—C2—C7 118.8 (2) C6—C5—C8 118.8 (3)
C3—C2—C1 120.7 (2) C4—C5—C8 126.0 (3)
C7—C2—C1 120.5 (2) O1—N5—O2 122.7 (3)
N3—N2—N1 106.0 (2) O1—N5—C4 118.4 (2)
N2—N3—N4 110.4 (2) O2—N5—C4 119.0 (3)
C2—C3—C4 119.5 (2) C5—C8—H8A 109.5
C2—C3—H3A 120.3 C5—C8—H8B 109.5
C4—C3—H3A 120.3 H8A—C8—H8B 109.5
C5—C4—C3 123.3 (2) C5—C8—H8C 109.5
C5—C4—N5 122.2 (3) H8A—C8—H8C 109.5
C3—C4—N5 114.5 (2) H8B—C8—H8C 109.5
N3—N4—C1—N1 −0.1 (3) C2—C3—C4—N5 −179.9 (2)
N3—N4—C1—C2 179.8 (2) C3—C2—C7—C6 0.4 (4)
N2—N1—C1—N4 −0.2 (3) C1—C2—C7—C6 −177.5 (2)
N2—N1—C1—C2 179.9 (2) C2—C7—C6—C5 −1.1 (4)
N4—C1—C2—C3 142.9 (3) C7—C6—C5—C4 1.2 (4)
N1—C1—C2—C3 −37.2 (4) C7—C6—C5—C8 −178.5 (3)
N4—C1—C2—C7 −39.2 (4) C3—C4—C5—C6 −0.6 (4)
N1—C1—C2—C7 140.7 (3) N5—C4—C5—C6 179.2 (2)
C1—N1—N2—N3 0.4 (3) C3—C4—C5—C8 179.1 (3)
N1—N2—N3—N4 −0.5 (3) N5—C4—C5—C8 −1.1 (4)
C1—N4—N3—N2 0.4 (3) C5—C4—N5—O1 −177.7 (3)
C7—C2—C3—C4 0.1 (4) C3—C4—N5—O1 2.2 (4)
C1—C2—C3—C4 178.1 (2) C5—C4—N5—O2 1.9 (4)
C2—C3—C4—C5 0.0 (4) C3—C4—N5—O2 −178.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N4i 0.86 2.01 2.832 (3) 160.

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2361).

References

  1. Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem.39, 1840–1848. [DOI] [PubMed]
  2. Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  6. Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [DOI] [PubMed]
  7. Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018825/dn2361sup1.cif

e-64-o1445-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018825/dn2361Isup2.hkl

e-64-o1445-Isup2.hkl (100.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES