Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):o1447. doi: 10.1107/S160053680802076X

A monoclinic polymorph of N,N′-bis­(2,6-diisopropyl­phen­yl)formamidine

Jason D Masuda a,*
PMCID: PMC2962078  PMID: 21203162

Abstract

A new polymorph of N,N′-bis­(2,6-diisopropyl­phen­yl)formamidine, C25H36N2, is reported, which is different from the previously reported ortho­rhom­bic structure. The mol­ecule crystallizes in the Eanti configuration, with tautomeric disorder of the N-bonded H atoms and no clear distinction between imine and amine functionalities. The mol­ecules form hydrogen-bonded dimers with inter­molecular N⋯N distances shorter than those in the ortho­rhom­bic polymorph.

Related literature

For the ortho­rhom­bic polymorph, see: Stibrany & Potenza (2006). For synthetic details and related literature, see: Krahulic et al. (2005); Perrin (1991).graphic file with name e-64-o1447-scheme1.jpg

Experimental

Crystal data

  • C25H36N2

  • M r = 364.56

  • Monoclinic, Inline graphic

  • a = 24.169 (4) Å

  • b = 12.7881 (18) Å

  • c = 19.479 (3) Å

  • β = 126.735 (2)°

  • V = 4824.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 291 (2) K

  • 0.45 × 0.34 × 0.30 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: none

  • 12048 measured reflections

  • 4242 independent reflections

  • 2237 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.161

  • S = 1.02

  • 4242 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802076X/bi2287sup1.cif

e-64-o1447-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802076X/bi2287Isup2.hkl

e-64-o1447-Isup2.hkl (208KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.86 2.03 2.882 (4) 171
N2—H2A⋯N2i 0.86 2.05 2.910 (3) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks Saint Mary’s University for funding.

supplementary crystallographic information

Comment

Crystals of the title compound were grown from toluene solution and were found to crystallize in the monoclinic space group C2/c, different from the previously published polymorph which crystallizes in the orthorhombic space group C2221 (Stibrany & Potenza, 2006). The molecule crystallizes in the E-anti configuration (Perrin, 1991), with tautomeric disorder of the N-bonded H atoms. The molecules form hydrogen-bonded dimers with N···N distances of 2.882 (4) and 2.910 (3) Å (Table 1). These distances are slightly shorter than that seen in the orthorhombic polymorph (2.947 Å). The two core amidine (NCNH) fragments are non-coplanar as a result of interaction between the sterically bulky 2,6-diisopropylphenyl fragments. The N1—C(1) (1.313 (3) Å) and N2—C1 (1.311 (3) Å) distances are similar in length, whereas in the orthorhombic polymorph there are distinct imine (1.288 Å) and amine (1.325 Å) functionalities.

Experimental

The title compound was prepared according to the literature procedure (Krahulic et al., 2005). Crystals were grown by evaporation of a toluene solution at room temperature.

Refinement

H atoms bonded to C and N atoms were refined in geometrically idealized positions with the riding-model approximation. The difference map showed equivalent electron density for the H atoms bonded to the formamidine N atoms. Thus, the H atom was refined as disordered over two positions, each with site occupancy factor 0.5.

Figures

Fig. 1.

Fig. 1.

Molecular structure showing displacement ellipsoids at the 30% probability level for non-H atoms. H atoms bound to C (except for H1) are omitted, and only one of the disordered H atoms (H1A & H1B) is shown.

Fig. 2.

Fig. 2.

A plot of the hydrogen-bonded dimer in the title compound, showing displacement ellipsoids at the 30% probability level for non-H atoms. H atoms bound to C (except for H1) are omitted, and only one of the disordered H atoms (H1A & H1B) is shown.

Crystal data

C25H36N2 F000 = 1600
Mr = 364.56 Dx = 1.004 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2205 reflections
a = 24.169 (4) Å θ = 2.6–21.8º
b = 12.7881 (18) Å µ = 0.06 mm1
c = 19.479 (3) Å T = 291 (2) K
β = 126.735 (2)º Block, colourless
V = 4824.8 (12) Å3 0.45 × 0.34 × 0.30 mm
Z = 8

Data collection

Bruker SMART 1K CCD diffractometer 2237 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
Monochromator: graphite θmax = 25.0º
T = 291(2) K θmin = 2.1º
φ and ω scans h = −28→28
Absorption correction: none k = −7→15
12048 measured reflections l = −23→23
4242 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.161   w = 1/[σ2(Fo2) + (0.065P)2 + 2.1873P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4242 reflections Δρmax = 0.18 e Å3
252 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N2 0.02590 (9) 0.18752 (13) 0.69910 (11) 0.0465 (5)
H2A 0.0113 0.1919 0.7299 0.056* 0.50
N1 0.00186 (10) 0.01071 (13) 0.67743 (12) 0.0502 (5)
H1A −0.0042 0.0087 0.7167 0.060* 0.50
C2 −0.00791 (13) −0.08218 (17) 0.63024 (16) 0.0509 (6)
C1 0.01996 (11) 0.09893 (17) 0.66139 (14) 0.0468 (6)
H1 0.0290 0.0985 0.6212 0.056*
C14 0.05632 (11) 0.27673 (17) 0.68974 (14) 0.0463 (6)
C15 0.01510 (13) 0.36571 (18) 0.64789 (15) 0.0554 (6)
C19 0.12706 (12) 0.27631 (19) 0.72640 (16) 0.0569 (6)
C7 0.03995 (14) −0.16434 (18) 0.67252 (17) 0.0607 (7)
C3 −0.06573 (14) −0.0910 (2) 0.54441 (16) 0.0612 (7)
C11 0.10007 (15) −0.1590 (2) 0.76716 (17) 0.0705 (8)
H11A 0.0904 −0.1015 0.7917 0.085*
C8 −0.12183 (15) −0.0076 (2) 0.50015 (18) 0.0746 (8)
H8A −0.1093 0.0474 0.5422 0.090*
C6 0.03099 (18) −0.2520 (2) 0.6239 (2) 0.0797 (9)
H6A 0.0627 −0.3064 0.6499 0.096*
C4 −0.07140 (17) −0.1813 (2) 0.50041 (19) 0.0781 (9)
H4A −0.1090 −0.1884 0.4432 0.094*
C20 −0.06095 (13) 0.3655 (2) 0.60888 (18) 0.0692 (8)
H20A −0.0673 0.3122 0.6397 0.083*
C16 0.04601 (16) 0.4528 (2) 0.64050 (19) 0.0776 (8)
H16A 0.0196 0.5120 0.6120 0.093*
C17 0.11450 (18) 0.4525 (2) 0.6744 (2) 0.0902 (10)
H17A 0.1341 0.5113 0.6688 0.108*
C23 0.17226 (13) 0.1832 (2) 0.77905 (18) 0.0719 (8)
H23A 0.1449 0.1200 0.7502 0.086*
C18 0.15455 (15) 0.3660 (2) 0.7168 (2) 0.0803 (9)
H18A 0.2011 0.3673 0.7396 0.096*
C5 −0.0236 (2) −0.2596 (2) 0.5387 (2) 0.0874 (10)
H5A −0.0279 −0.3179 0.5072 0.105*
C25 0.23851 (14) 0.1727 (3) 0.7863 (2) 0.0935 (10)
H25A 0.2276 0.1749 0.7302 0.140*
H25B 0.2605 0.1074 0.8133 0.140*
H25C 0.2691 0.2293 0.8201 0.140*
C13 0.10778 (19) −0.2581 (3) 0.8163 (2) 0.1084 (12)
H13A 0.1433 −0.2478 0.8764 0.163*
H13B 0.1200 −0.3158 0.7963 0.163*
H13C 0.0649 −0.2730 0.8071 0.163*
C12 0.16764 (18) −0.1332 (3) 0.7815 (2) 0.1097 (12)
H12A 0.1630 −0.0682 0.7539 0.165*
H12B 0.1788 −0.1879 0.7579 0.165*
H12C 0.2038 −0.1273 0.8418 0.165*
C10 −0.12660 (19) 0.0421 (3) 0.4259 (2) 0.1045 (11)
H10A −0.0823 0.0697 0.4461 0.157*
H10B −0.1599 0.0976 0.4021 0.157*
H10C −0.1406 −0.0097 0.3827 0.157*
C24 0.18908 (18) 0.1848 (3) 0.8679 (2) 0.1184 (14)
H24A 0.1470 0.1816 0.8627 0.178*
H24B 0.2133 0.2482 0.8968 0.178*
H24C 0.2175 0.1258 0.9002 0.178*
C21 −0.08718 (19) 0.4678 (3) 0.6196 (3) 0.1195 (13)
H21A −0.0574 0.4892 0.6785 0.179*
H21B −0.1332 0.4581 0.6026 0.179*
H21C −0.0875 0.5207 0.5844 0.179*
C9 −0.19216 (18) −0.0515 (3) 0.4695 (3) 0.1260 (14)
H9A −0.1900 −0.0740 0.5181 0.189*
H9B −0.2038 −0.1099 0.4321 0.189*
H9C −0.2267 0.0018 0.4392 0.189*
C22 −0.10306 (17) 0.3317 (4) 0.5178 (2) 0.1415 (17)
H22A −0.0855 0.2666 0.5135 0.212*
H22B −0.1007 0.3839 0.4842 0.212*
H22C −0.1502 0.3226 0.4969 0.212*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0542 (12) 0.0376 (11) 0.0561 (12) −0.0011 (9) 0.0376 (10) −0.0006 (9)
N1 0.0740 (14) 0.0368 (11) 0.0566 (12) 0.0004 (10) 0.0481 (11) −0.0005 (9)
C2 0.0741 (17) 0.0376 (13) 0.0615 (16) −0.0029 (12) 0.0516 (15) −0.0020 (12)
C1 0.0513 (14) 0.0483 (14) 0.0475 (13) 0.0015 (11) 0.0330 (12) 0.0025 (12)
C14 0.0511 (14) 0.0420 (13) 0.0495 (13) −0.0059 (11) 0.0322 (12) −0.0040 (11)
C15 0.0612 (16) 0.0429 (14) 0.0589 (16) −0.0023 (12) 0.0342 (14) 0.0009 (12)
C19 0.0550 (16) 0.0551 (15) 0.0616 (16) −0.0068 (13) 0.0355 (13) −0.0058 (13)
C7 0.089 (2) 0.0415 (14) 0.0725 (18) 0.0033 (14) 0.0599 (17) 0.0001 (13)
C3 0.0817 (19) 0.0557 (16) 0.0582 (17) −0.0070 (14) 0.0483 (16) −0.0065 (14)
C11 0.090 (2) 0.0576 (17) 0.074 (2) 0.0200 (15) 0.0539 (18) 0.0119 (15)
C8 0.078 (2) 0.080 (2) 0.0591 (17) −0.0008 (17) 0.0373 (16) −0.0067 (15)
C6 0.120 (3) 0.0427 (16) 0.100 (3) 0.0088 (16) 0.079 (2) −0.0006 (16)
C4 0.106 (2) 0.069 (2) 0.0666 (19) −0.0134 (18) 0.0555 (18) −0.0150 (17)
C20 0.0616 (17) 0.0590 (17) 0.079 (2) 0.0106 (14) 0.0379 (16) 0.0132 (15)
C16 0.086 (2) 0.0506 (16) 0.095 (2) −0.0034 (15) 0.0534 (19) 0.0093 (16)
C17 0.093 (2) 0.0605 (19) 0.125 (3) −0.0231 (18) 0.069 (2) 0.003 (2)
C23 0.0534 (16) 0.0719 (18) 0.083 (2) 0.0030 (14) 0.0369 (15) 0.0051 (16)
C18 0.0636 (18) 0.076 (2) 0.101 (2) −0.0171 (16) 0.0493 (18) −0.0044 (18)
C5 0.139 (3) 0.0538 (19) 0.096 (3) −0.009 (2) 0.084 (2) −0.0201 (18)
C25 0.0622 (18) 0.117 (3) 0.094 (2) 0.0095 (18) 0.0426 (17) −0.009 (2)
C13 0.146 (3) 0.089 (2) 0.107 (3) 0.024 (2) 0.085 (3) 0.034 (2)
C12 0.099 (3) 0.127 (3) 0.105 (3) 0.010 (2) 0.062 (2) 0.019 (2)
C10 0.127 (3) 0.099 (3) 0.088 (2) 0.021 (2) 0.064 (2) 0.022 (2)
C24 0.097 (2) 0.168 (4) 0.099 (3) 0.056 (3) 0.063 (2) 0.052 (3)
C21 0.109 (3) 0.097 (3) 0.158 (4) 0.034 (2) 0.084 (3) 0.006 (3)
C9 0.096 (3) 0.149 (4) 0.137 (3) −0.001 (3) 0.071 (3) 0.009 (3)
C22 0.067 (2) 0.214 (5) 0.096 (3) 0.005 (3) 0.023 (2) −0.040 (3)

Geometric parameters (Å, °)

N2—C1 1.310 (3) C16—H16A 0.930
N2—C14 1.427 (3) C17—C18 1.373 (4)
N2—H2A 0.860 C17—H17A 0.930
N1—C1 1.313 (3) C23—C24 1.523 (4)
N1—C2 1.432 (3) C23—C25 1.527 (4)
N1—H1A 0.860 C23—H23A 0.980
C2—C3 1.402 (3) C18—H18A 0.930
C2—C7 1.407 (3) C5—H5A 0.930
C1—H1 0.930 C25—H25A 0.960
C14—C19 1.404 (3) C25—H25B 0.960
C14—C15 1.407 (3) C25—H25C 0.960
C15—C16 1.395 (3) C13—H13A 0.960
C15—C20 1.512 (3) C13—H13B 0.960
C19—C18 1.392 (3) C13—H13C 0.960
C19—C23 1.524 (3) C12—H12A 0.960
C7—C6 1.398 (3) C12—H12B 0.960
C7—C11 1.520 (4) C12—H12C 0.960
C3—C4 1.395 (4) C10—H10A 0.960
C3—C8 1.523 (4) C10—H10B 0.960
C11—C12 1.519 (4) C10—H10C 0.960
C11—C13 1.531 (4) C24—H24A 0.960
C11—H11A 0.980 C24—H24B 0.960
C8—C10 1.520 (4) C24—H24C 0.960
C8—C9 1.532 (4) C21—H21A 0.960
C8—H8A 0.980 C21—H21B 0.960
C6—C5 1.373 (4) C21—H21C 0.960
C6—H6A 0.930 C9—H9A 0.960
C4—C5 1.365 (4) C9—H9B 0.960
C4—H4A 0.930 C9—H9C 0.960
C20—C22 1.487 (4) C22—H22A 0.960
C20—C21 1.522 (4) C22—H22B 0.960
C20—H20A 0.980 C22—H22C 0.960
C16—C17 1.367 (4)
C1—N2—C14 120.78 (18) C19—C23—C25 114.9 (2)
C1—N2—H2A 119.6 C24—C23—H23A 107.0
C14—N2—H2A 119.6 C19—C23—H23A 107.0
C1—N1—C2 120.68 (18) C25—C23—H23A 107.0
C1—N1—H1A 119.7 C17—C18—C19 121.5 (3)
C2—N1—H1A 119.7 C17—C18—H18A 119.3
C3—C2—C7 121.5 (2) C19—C18—H18A 119.3
C3—C2—N1 119.7 (2) C4—C5—C6 119.7 (3)
C7—C2—N1 118.8 (2) C4—C5—H5A 120.2
N2—C1—N1 123.3 (2) C6—C5—H5A 120.2
N2—C1—H1 118.3 C23—C25—H25A 109.5
N1—C1—H1 118.3 C23—C25—H25B 109.5
C19—C14—C15 121.5 (2) H25A—C25—H25B 109.5
C19—C14—N2 119.7 (2) C23—C25—H25C 109.5
C15—C14—N2 118.7 (2) H25A—C25—H25C 109.5
C16—C15—C14 117.9 (2) H25B—C25—H25C 109.5
C16—C15—C20 121.0 (2) C11—C13—H13A 109.5
C14—C15—C20 121.1 (2) C11—C13—H13B 109.5
C18—C19—C14 117.5 (2) H13A—C13—H13B 109.5
C18—C19—C23 121.8 (2) C11—C13—H13C 109.5
C14—C19—C23 120.6 (2) H13A—C13—H13C 109.5
C6—C7—C2 117.5 (3) H13B—C13—H13C 109.5
C6—C7—C11 120.4 (3) C11—C12—H12A 109.5
C2—C7—C11 122.1 (2) C11—C12—H12B 109.5
C4—C3—C2 117.4 (3) H12A—C12—H12B 109.5
C4—C3—C8 120.3 (3) C11—C12—H12C 109.5
C2—C3—C8 122.2 (2) H12A—C12—H12C 109.5
C12—C11—C7 112.1 (2) H12B—C12—H12C 109.5
C12—C11—C13 110.4 (3) C8—C10—H10A 109.5
C7—C11—C13 113.1 (3) C8—C10—H10B 109.5
C12—C11—H11A 107.0 H10A—C10—H10B 109.5
C7—C11—H11A 107.0 C8—C10—H10C 109.5
C13—C11—H11A 107.0 H10A—C10—H10C 109.5
C10—C8—C3 111.5 (3) H10B—C10—H10C 109.5
C10—C8—C9 110.4 (3) C23—C24—H24A 109.5
C3—C8—C9 111.6 (3) C23—C24—H24B 109.5
C10—C8—H8A 107.7 H24A—C24—H24B 109.5
C3—C8—H8A 107.7 C23—C24—H24C 109.5
C9—C8—H8A 107.7 H24A—C24—H24C 109.5
C5—C6—C7 121.6 (3) H24B—C24—H24C 109.5
C5—C6—H6A 119.2 C20—C21—H21A 109.5
C7—C6—H6A 119.2 C20—C21—H21B 109.5
C5—C4—C3 122.1 (3) H21A—C21—H21B 109.5
C5—C4—H4A 118.9 C20—C21—H21C 109.5
C3—C4—H4A 118.9 H21A—C21—H21C 109.5
C22—C20—C15 111.0 (2) H21B—C21—H21C 109.5
C22—C20—C21 111.7 (3) C8—C9—H9A 109.5
C15—C20—C21 114.2 (2) C8—C9—H9B 109.5
C22—C20—H20A 106.4 H9A—C9—H9B 109.5
C15—C20—H20A 106.4 C8—C9—H9C 109.5
C21—C20—H20A 106.4 H9A—C9—H9C 109.5
C17—C16—C15 121.1 (3) H9B—C9—H9C 109.5
C17—C16—H16A 119.5 C20—C22—H22A 109.5
C15—C16—H16A 119.5 C20—C22—H22B 109.5
C16—C17—C18 120.5 (3) H22A—C22—H22B 109.5
C16—C17—H17A 119.7 C20—C22—H22C 109.5
C18—C17—H17A 119.7 H22A—C22—H22C 109.5
C24—C23—C19 110.5 (2) H22B—C22—H22C 109.5
C24—C23—C25 110.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N1i 0.86 2.03 2.882 (4) 171
N2—H2A···N2i 0.86 2.05 2.910 (3) 175

Symmetry codes: (i) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2287).

References

  1. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Krahulic, K. E., Enright, G. D., Parvez, M. & Roesler, R. (2005). J. Am. Chem. Soc.127, 4142–4143. [DOI] [PubMed]
  4. Perrin, C. L. (1991). The Chemistry of Amidines and Imidates, Vol. 2, edited by S. Patai & Z. Rappoport, pp. 147–229. Chichester: Wiley.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stibrany, R. T. & Potenza, J. A. (2006). Private communication (refcode: TEVJOU). CCDC, Cambridge, England.
  7. Westrip, S. J. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802076X/bi2287sup1.cif

e-64-o1447-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802076X/bi2287Isup2.hkl

e-64-o1447-Isup2.hkl (208KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES