Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):o1625. doi: 10.1107/S1600536808023234

N-(4-Chloro­phen­yl)-3,4,5-trimethoxy­benzamide

Aamer Saeed a,*, Rasheed Ahmad Khera a, Mahira Batool a, Uzma Shaheen a, Ulrich Flörke b
PMCID: PMC2962079  PMID: 21203315

Abstract

In the title compound, C16H16ClNO4, the dihedral angle between the two aromatic rings is 67.33 (8)°. The crystal packing shows strong inter­molecular N—H⋯O hydrogen bonds that link the mol­ecules to form chains along [Inline graphic01].

Related literature

For related literature, see: Capdeville et al. (2002); Ho et al. (2002); Igawa et al. (1999); Jackson et al. (1994); Makino et al. (2003); Zhichkin et al. (2007).graphic file with name e-64-o1625-scheme1.jpg

Experimental

Crystal data

  • C16H16ClNO4

  • M r = 321.75

  • Monoclinic, Inline graphic

  • a = 9.487 (2) Å

  • b = 25.666 (6) Å

  • c = 6.9781 (15) Å

  • β = 112.340 (5)°

  • V = 1571.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • 0.41 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.901, T max = 0.975

  • 6765 measured reflections

  • 3581 independent reflections

  • 3104 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.106

  • S = 1.02

  • 3581 reflections

  • 202 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), with 1780 Friedel pairs

  • Flack parameter: 0.06 (6)

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023234/bt2747sup1.cif

e-64-o1625-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023234/bt2747Isup2.hkl

e-64-o1625-Isup2.hkl (175.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.18 2.878 (3) 136

Symmetry code: (i) Inline graphic.

Acknowledgments

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 20022), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic, have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville et al., 2002). Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999)

Geometric parameters of the title compound, C16H16ClNO4, are in the usual ranges. The dihedral angle between the two aromatic rings is 67.33 (8)° and the torsion angles N1—C1—C2—C3 and C1—N1—C11—C12 are -31.1 (3)° and -39.2 (4)°, respectively. Of the three methoxy groups two of them lie nearly in plane with the aromatic ring, the O(3) group is almost perpendicular with C9—O3—C5—C4 of 92.2 (3)°. The crystal packing shows strong intermolecular N—H···O bonds that link molecules to endless chains along [-101]. Details are given in Table 1.

Experimental

Trimethoxybenzoyl chloride (5.4 mmol) in CHCl3 was treated with 4-chloroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: IR (KBr) 3226, 1665, 1616, 1520, 1352 cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.13 (d, J = 8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H), 7.51 (dd, J = 8 Hz, 1H), 7.66 (dd, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 2H), 7.36 (br s, 1H), 7.25 (d, J = 8 Hz, 1H), 3.89 (9H, s, OMex3). Anal. Calcd. For C16H16ClNO4, C, 59.73; H, 5.01; 11.02; N, 4.35; found C, 59.69; H, 5.04; 11.02; N, 4.42

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C or N) and 1.5U for methyl-C.

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed along [001] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C16H16ClNO4 F000 = 672
Mr = 321.75 Dx = 1.360 Mg m3
Monoclinic, Cc Mo Kα radiation λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 879 reflections
a = 9.487 (2) Å θ = 2.5–26.6º
b = 25.666 (6) Å µ = 0.26 mm1
c = 6.9781 (15) Å T = 120 (2) K
β = 112.340 (5)º Prism, colourless
V = 1571.5 (6) Å3 0.41 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 3581 independent reflections
Radiation source: sealed tube 3104 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 120(2) K θmax = 27.9º
φ and ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004) h = −12→12
Tmin = 0.901, Tmax = 0.975 k = −33→29
6765 measured reflections l = −9→9

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1374P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.33 e Å3
3581 reflections Δρmin = −0.24 e Å3
202 parameters Extinction correction: none
2 restraints Absolute structure: Flack (1983), with 1780 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.06 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.24506 (8) 0.52096 (2) −0.45259 (9) 0.03098 (17)
O1 0.0700 (2) 0.75731 (7) −0.2052 (3) 0.0251 (4)
O2 0.3495 (2) 0.83040 (7) 0.6718 (3) 0.0293 (4)
O3 0.2739 (2) 0.92522 (7) 0.5093 (3) 0.0287 (4)
O4 0.1760 (2) 0.94204 (7) 0.1029 (3) 0.0293 (4)
N1 0.2656 (2) 0.71265 (7) 0.0305 (3) 0.0206 (4)
H1 0.3366 0.7136 0.1562 0.025*
C1 0.1742 (3) 0.75494 (10) −0.0350 (4) 0.0201 (5)
C2 0.2087 (3) 0.79915 (9) 0.1153 (4) 0.0190 (5)
C3 0.2689 (3) 0.79115 (10) 0.3293 (4) 0.0207 (5)
H3A 0.2926 0.7570 0.3846 0.025*
C4 0.2938 (3) 0.83381 (10) 0.4601 (4) 0.0217 (5)
C5 0.2589 (3) 0.88383 (10) 0.3797 (4) 0.0217 (5)
C6 0.2015 (3) 0.89163 (10) 0.1650 (4) 0.0226 (6)
C7 0.1739 (3) 0.84890 (9) 0.0330 (4) 0.0209 (5)
H7A 0.1314 0.8538 −0.1129 0.025*
C8 0.4275 (4) 0.78426 (12) 0.7598 (5) 0.0380 (7)
H8A 0.3560 0.7549 0.7223 0.057*
H8B 0.4727 0.7878 0.9109 0.057*
H8C 0.5083 0.7779 0.7073 0.057*
C9 0.4195 (4) 0.94971 (13) 0.5730 (6) 0.0457 (8)
H9A 0.4986 0.9251 0.6541 0.069*
H9B 0.4213 0.9803 0.6582 0.069*
H9C 0.4387 0.9606 0.4506 0.069*
C10 0.1094 (4) 0.95144 (11) −0.1151 (5) 0.0375 (7)
H10A 0.1764 0.9377 −0.1807 0.056*
H10B 0.0960 0.9890 −0.1405 0.056*
H10C 0.0100 0.9341 −0.1736 0.056*
C11 0.2554 (3) 0.66682 (9) −0.0888 (4) 0.0194 (5)
C12 0.1169 (3) 0.64558 (10) −0.2157 (4) 0.0238 (5)
H12A 0.0244 0.6618 −0.2258 0.029*
C13 0.1133 (3) 0.60093 (10) −0.3273 (4) 0.0269 (6)
H13A 0.0184 0.5868 −0.4158 0.032*
C14 0.2479 (3) 0.57674 (10) −0.3103 (4) 0.0218 (5)
C15 0.3862 (3) 0.59685 (10) −0.1809 (4) 0.0259 (6)
H15A 0.4784 0.5798 −0.1675 0.031*
C16 0.3897 (3) 0.64200 (10) −0.0706 (4) 0.0250 (6)
H16A 0.4847 0.6561 0.0182 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0333 (3) 0.0268 (3) 0.0286 (3) 0.0033 (3) 0.0071 (3) −0.0101 (3)
O1 0.0181 (9) 0.0240 (10) 0.0225 (9) 0.0011 (7) −0.0043 (7) −0.0031 (7)
O2 0.0373 (11) 0.0277 (10) 0.0193 (9) 0.0051 (8) 0.0066 (8) 0.0008 (8)
O3 0.0346 (11) 0.0236 (9) 0.0262 (10) −0.0009 (8) 0.0097 (8) −0.0075 (8)
O4 0.0406 (12) 0.0171 (9) 0.0248 (10) 0.0013 (8) 0.0062 (9) 0.0014 (8)
N1 0.0170 (10) 0.0186 (10) 0.0186 (10) 0.0016 (8) −0.0019 (8) −0.0021 (9)
C1 0.0157 (11) 0.0203 (12) 0.0207 (13) −0.0004 (9) 0.0026 (11) −0.0003 (10)
C2 0.0154 (12) 0.0179 (12) 0.0214 (13) −0.0006 (9) 0.0046 (10) −0.0017 (10)
C3 0.0172 (11) 0.0188 (12) 0.0221 (13) −0.0002 (9) 0.0027 (10) 0.0033 (10)
C4 0.0218 (13) 0.0241 (14) 0.0184 (13) −0.0003 (10) 0.0068 (11) −0.0015 (10)
C5 0.0218 (12) 0.0203 (13) 0.0230 (13) −0.0009 (10) 0.0085 (11) −0.0056 (10)
C6 0.0227 (13) 0.0181 (13) 0.0248 (14) 0.0016 (10) 0.0065 (11) 0.0010 (10)
C7 0.0192 (11) 0.0211 (13) 0.0187 (12) 0.0010 (9) 0.0029 (10) 0.0005 (10)
C8 0.052 (2) 0.0397 (17) 0.0211 (14) 0.0166 (15) 0.0126 (14) 0.0076 (13)
C9 0.0401 (18) 0.0386 (18) 0.050 (2) −0.0104 (14) 0.0079 (16) −0.0163 (15)
C10 0.058 (2) 0.0190 (14) 0.0282 (15) 0.0046 (13) 0.0084 (14) 0.0044 (12)
C11 0.0225 (12) 0.0159 (12) 0.0161 (11) −0.0007 (9) 0.0031 (10) 0.0018 (9)
C12 0.0176 (12) 0.0218 (13) 0.0294 (14) 0.0030 (10) 0.0059 (11) −0.0023 (11)
C13 0.0200 (13) 0.0283 (15) 0.0255 (14) −0.0029 (10) 0.0011 (11) −0.0080 (11)
C14 0.0286 (13) 0.0161 (12) 0.0209 (13) 0.0003 (10) 0.0095 (11) −0.0039 (10)
C15 0.0208 (13) 0.0263 (14) 0.0285 (14) 0.0057 (10) 0.0069 (11) 0.0015 (11)
C16 0.0191 (13) 0.0233 (14) 0.0255 (14) −0.0013 (10) 0.0005 (11) −0.0014 (11)

Geometric parameters (Å, °)

Cl1—C14 1.737 (2) C8—H8A 0.9800
O1—C1 1.225 (3) C8—H8B 0.9800
O2—C4 1.369 (3) C8—H8C 0.9800
O2—C8 1.408 (3) C9—H9A 0.9800
O3—C5 1.367 (3) C9—H9B 0.9800
O3—C9 1.426 (4) C9—H9C 0.9800
O4—C6 1.357 (3) C10—H10A 0.9800
O4—C10 1.429 (4) C10—H10B 0.9800
N1—C1 1.356 (3) C10—H10C 0.9800
N1—C11 1.423 (3) C11—C16 1.386 (4)
N1—H1 0.8800 C11—C12 1.386 (4)
C1—C2 1.494 (3) C12—C13 1.378 (4)
C2—C7 1.387 (3) C12—H12A 0.9500
C2—C3 1.397 (4) C13—C14 1.384 (4)
C3—C4 1.387 (3) C13—H13A 0.9500
C3—H3A 0.9500 C14—C15 1.380 (4)
C4—C5 1.390 (4) C15—C16 1.385 (4)
C5—C6 1.400 (3) C15—H15A 0.9500
C6—C7 1.392 (4) C16—H16A 0.9500
C7—H7A 0.9500
C4—O2—C8 116.6 (2) H8B—C8—H8C 109.5
C5—O3—C9 113.2 (2) O3—C9—H9A 109.5
C6—O4—C10 117.0 (2) O3—C9—H9B 109.5
C1—N1—C11 124.9 (2) H9A—C9—H9B 109.5
C1—N1—H1 117.5 O3—C9—H9C 109.5
C11—N1—H1 117.5 H9A—C9—H9C 109.5
O1—C1—N1 123.0 (2) H9B—C9—H9C 109.5
O1—C1—C2 121.6 (2) O4—C10—H10A 109.5
N1—C1—C2 115.5 (2) O4—C10—H10B 109.5
C7—C2—C3 120.9 (2) H10A—C10—H10B 109.5
C7—C2—C1 117.0 (2) O4—C10—H10C 109.5
C3—C2—C1 122.0 (2) H10A—C10—H10C 109.5
C4—C3—C2 119.1 (2) H10B—C10—H10C 109.5
C4—C3—H3A 120.5 C16—C11—C12 119.5 (2)
C2—C3—H3A 120.5 C16—C11—N1 118.1 (2)
O2—C4—C3 124.0 (2) C12—C11—N1 122.4 (2)
O2—C4—C5 115.4 (2) C13—C12—C11 120.1 (2)
C3—C4—C5 120.6 (2) C13—C12—H12A 119.9
O3—C5—C4 120.1 (2) C11—C12—H12A 119.9
O3—C5—C6 119.8 (2) C12—C13—C14 120.0 (2)
C4—C5—C6 120.0 (2) C12—C13—H13A 120.0
O4—C6—C7 125.0 (2) C14—C13—H13A 120.0
O4—C6—C5 115.3 (2) C15—C14—C13 120.3 (2)
C7—C6—C5 119.6 (2) C15—C14—Cl1 119.1 (2)
C2—C7—C6 119.7 (2) C13—C14—Cl1 120.5 (2)
C2—C7—H7A 120.1 C14—C15—C16 119.5 (2)
C6—C7—H7A 120.1 C14—C15—H15A 120.2
O2—C8—H8A 109.5 C16—C15—H15A 120.2
O2—C8—H8B 109.5 C15—C16—C11 120.5 (2)
H8A—C8—H8B 109.5 C15—C16—H16A 119.8
O2—C8—H8C 109.5 C11—C16—H16A 119.8
H8A—C8—H8C 109.5
C11—N1—C1—O1 1.5 (4) O3—C5—C6—O4 5.1 (3)
C11—N1—C1—C2 −178.5 (2) C4—C5—C6—O4 −177.9 (2)
O1—C1—C2—C7 −29.2 (3) O3—C5—C6—C7 −174.4 (2)
N1—C1—C2—C7 150.8 (2) C4—C5—C6—C7 2.6 (4)
O1—C1—C2—C3 148.9 (2) C3—C2—C7—C6 1.1 (4)
N1—C1—C2—C3 −31.1 (3) C1—C2—C7—C6 179.2 (2)
C7—C2—C3—C4 0.0 (4) O4—C6—C7—C2 178.2 (2)
C1—C2—C3—C4 −178.0 (2) C5—C6—C7—C2 −2.4 (4)
C8—O2—C4—C3 19.9 (4) C1—N1—C11—C16 143.0 (3)
C8—O2—C4—C5 −161.6 (3) C1—N1—C11—C12 −39.2 (4)
C2—C3—C4—O2 178.7 (2) C16—C11—C12—C13 −1.8 (4)
C2—C3—C4—C5 0.2 (4) N1—C11—C12—C13 −179.6 (2)
C9—O3—C5—C4 92.2 (3) C11—C12—C13—C14 1.0 (4)
C9—O3—C5—C6 −90.8 (3) C12—C13—C14—C15 0.5 (4)
O2—C4—C5—O3 −3.1 (3) C12—C13—C14—Cl1 −179.1 (2)
C3—C4—C5—O3 175.5 (2) C13—C14—C15—C16 −1.1 (4)
O2—C4—C5—C6 179.8 (2) Cl1—C14—C15—C16 178.5 (2)
C3—C4—C5—C6 −1.6 (4) C14—C15—C16—C11 0.3 (4)
C10—O4—C6—C7 2.9 (4) C12—C11—C16—C15 1.2 (4)
C10—O4—C6—C5 −176.6 (3) N1—C11—C16—C15 179.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.18 2.878 (3) 136

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2747).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Capdeville, R., Buchdunger, E. Zimmermann, J. & Matter, A. (2002). Nature Rev. Drug Discov.1, 493–502. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.
  5. Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn. Patent Kokai Tokkyo Koho JP 11171848.
  6. Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc.116, 3220–3230.
  7. Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc.24, 389–392.
  8. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023234/bt2747sup1.cif

e-64-o1625-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023234/bt2747Isup2.hkl

e-64-o1625-Isup2.hkl (175.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES