Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):o1597. doi: 10.1107/S1600536808022769

Benzaldehyde thio­semicarbazone monohydrate

Sheng-Jiu Gu a,*, Kai-Mei Zhu a
PMCID: PMC2962080  PMID: 21203291

Abstract

In the title compound, C8H9N3S·H2O, intra­molecular N—H⋯N hydrogen bonding contributes to the mol­ecular conformation. Water mol­ecules are involved in inter­molecular N—H⋯O and O—H⋯S hydrogen bonds, which link the mol­ecules into ribbons extended along the a axis. Weak inter­molecular N—H⋯S hydrogen bonds link these ribbons into layers parallel to the ab plane with the phenyl rings pointing up and down.

Related literature

For related crystal structures, see Beraldo et al. (2004); Bondock et al. (2007); Jing et al. (2006).graphic file with name e-64-o1597-scheme1.jpg

Experimental

Crystal data

  • C8H9N3S·H2O

  • M r = 197.26

  • Orthorhombic, Inline graphic

  • a = 6.1685 (10) Å

  • b = 7.6733 (12) Å

  • c = 21.131 (2) Å

  • V = 1000.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 (2) K

  • 0.49 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.871, T max = 0.923

  • 4749 measured reflections

  • 1764 independent reflections

  • 1438 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.105

  • S = 1.07

  • 1764 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 689 Friedel pairs

  • Flack parameter: −0.05 (13)

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022769/cv2428sup1.cif

e-64-o1597-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022769/cv2428Isup2.hkl

e-64-o1597-Isup2.hkl (86.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1 0.86 2.26 2.613 (4) 105
N2—H2⋯O1i 0.86 1.95 2.805 (3) 171
N3—H3B⋯S1ii 0.86 2.57 3.423 (3) 170
O1—H1A⋯S1 0.85 2.45 3.276 (2) 164
O1—H1B⋯S1i 0.85 2.44 3.284 (2) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Nature Science Foundation of Guangxi (No. 0640190 and No. 0728229), the Tackle Key Problem Foundation of Guangxi (No. 0815005-1-17), the Nature Science Foundation of Guilin (No. 20070305 and No. 20080103-5) and the Education Foundation of Guangxi (No. 200710MS144) for financial support.

supplementary crystallographic information

Comment

Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, exhibit strong biological activity. Therefor,they are important for drug design (Beraldo et al., 2004), organocatalysis and for the preparation of heterocyclic rings (Bondock et al., 2007). In this paper, we present the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compounds (Jing et al., 2006). Intramolecular N—H···O hydrogen bond (Table 1) contributes to the molecular conformation. Crystalline water molecules are involved in the intermolecular N—H···O and O—H···S hydrogen bonds (Table 1), which link the molecules into ribbons extended along a axis. Weak intermolecular N—H···S hydrogen bonds (Table 1) link further these ribbons into layers parallel to ab plane with the up and down protruding phenyl rings.

Experimental

Benzaldehyde (0.3 mmol) and thiosemicarbazide (0.3 mmol) were mixed in 50 ml flash in the presence of aqueous medium. After stirring 30 min at 373 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C8H11N3OS: C 48.71, H 5.62, N 21.30%; found: C 48.58, H 5.65, N 21.24%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H 0.85 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (C,O,N).

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C8H9N3S·H2O Dx = 1.310 Mg m3
Mr = 197.26 Mo Kα radiation λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 1572 reflections
a = 6.1685 (10) Å θ = 2.8–22.5º
b = 7.6733 (12) Å µ = 0.29 mm1
c = 21.131 (2) Å T = 298 (2) K
V = 1000.2 (2) Å3 Block, orange
Z = 4 0.49 × 0.30 × 0.28 mm
F000 = 416

Data collection

Bruker SMART CCD area-detector diffractometer 1764 independent reflections
Radiation source: fine-focus sealed tube 1438 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.065
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.871, Tmax = 0.924 k = −9→6
4749 measured reflections l = −25→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0825P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.25 e Å3
1764 reflections Δρmin = −0.17 e Å3
118 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 689 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.05 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.5077 (4) 0.4006 (3) 0.35842 (11) 0.0430 (6)
N2 0.4610 (4) 0.4442 (3) 0.42017 (10) 0.0402 (6)
H2 0.5473 0.5107 0.4412 0.048*
N3 0.1572 (5) 0.2820 (4) 0.41293 (12) 0.0616 (9)
H3A 0.1923 0.2576 0.3746 0.074*
H3B 0.0400 0.2401 0.4289 0.074*
O1 0.2807 (3) 0.8582 (3) 0.51847 (12) 0.0681 (7)
H1A 0.2874 0.7483 0.5138 0.082*
H1B 0.4026 0.9030 0.5091 0.082*
S1 0.22368 (12) 0.43397 (10) 0.52322 (3) 0.0473 (3)
C1 0.2821 (5) 0.3831 (3) 0.44708 (14) 0.0398 (7)
C2 0.6891 (5) 0.4535 (4) 0.33743 (13) 0.0436 (7)
H2A 0.7840 0.5112 0.3645 0.052*
C3 0.7511 (4) 0.4251 (4) 0.27170 (12) 0.0412 (7)
C4 0.6111 (6) 0.3517 (4) 0.22810 (15) 0.0534 (9)
H4 0.4745 0.3146 0.2409 0.064*
C5 0.6728 (7) 0.3333 (5) 0.16566 (16) 0.0640 (11)
H5 0.5766 0.2870 0.1362 0.077*
C6 0.8751 (7) 0.3834 (5) 0.14733 (17) 0.0636 (11)
H6 0.9180 0.3671 0.1056 0.076*
C7 1.0158 (6) 0.4572 (5) 0.18932 (16) 0.0630 (10)
H7 1.1523 0.4940 0.1762 0.076*
C8 0.9527 (5) 0.4761 (4) 0.25132 (15) 0.0536 (9)
H8 1.0490 0.5248 0.2802 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0480 (15) 0.0477 (15) 0.0332 (13) 0.0000 (13) 0.0012 (12) −0.0020 (11)
N2 0.0443 (14) 0.0422 (14) 0.0342 (12) −0.0074 (14) −0.0004 (11) −0.0034 (12)
N3 0.061 (2) 0.079 (2) 0.0456 (17) −0.0290 (17) 0.0118 (14) −0.0121 (15)
O1 0.0524 (15) 0.0609 (13) 0.0910 (19) 0.0017 (12) 0.0204 (15) −0.0130 (13)
S1 0.0467 (5) 0.0576 (5) 0.0376 (4) 0.0009 (4) 0.0015 (4) −0.0018 (4)
C1 0.0402 (17) 0.0381 (16) 0.0411 (16) 0.0008 (15) −0.0035 (15) 0.0036 (12)
C2 0.0415 (17) 0.0469 (17) 0.0422 (16) 0.0035 (17) −0.0009 (14) −0.0018 (14)
C3 0.0421 (17) 0.0433 (14) 0.0383 (15) 0.0013 (18) 0.0036 (14) 0.0015 (14)
C4 0.056 (2) 0.061 (2) 0.0429 (19) −0.0134 (17) 0.0061 (17) −0.0012 (17)
C5 0.083 (3) 0.065 (2) 0.044 (2) −0.013 (2) 0.0033 (19) −0.0067 (18)
C6 0.086 (3) 0.061 (2) 0.043 (2) 0.005 (2) 0.017 (2) 0.0038 (18)
C7 0.053 (2) 0.080 (3) 0.057 (2) −0.002 (2) 0.0154 (18) 0.010 (2)
C8 0.050 (2) 0.066 (2) 0.0446 (17) −0.0061 (17) 0.0023 (16) 0.0054 (16)

Geometric parameters (Å, °)

N1—C2 1.270 (3) C3—C8 1.373 (4)
N1—N2 1.378 (3) C3—C4 1.382 (4)
N2—C1 1.327 (3) C4—C5 1.380 (4)
N2—H2 0.8600 C4—H4 0.9300
N3—C1 1.310 (4) C5—C6 1.362 (5)
N3—H3A 0.8600 C5—H5 0.9300
N3—H3B 0.8600 C6—C7 1.364 (5)
O1—H1A 0.8499 C6—H6 0.9300
O1—H1B 0.8499 C7—C8 1.375 (5)
S1—C1 1.695 (3) C7—H7 0.9300
C2—C3 1.457 (4) C8—H8 0.9300
C2—H2A 0.9300
C2—N1—N2 115.9 (3) C4—C3—C2 122.2 (3)
C1—N2—N1 119.6 (2) C5—C4—C3 120.4 (3)
C1—N2—H2 120.2 C5—C4—H4 119.8
N1—N2—H2 120.2 C3—C4—H4 119.8
C1—N3—H3A 120.0 C6—C5—C4 119.7 (4)
C1—N3—H3B 120.0 C6—C5—H5 120.2
H3A—N3—H3B 120.0 C4—C5—H5 120.2
H1A—O1—H1B 109.4 C5—C6—C7 121.0 (3)
N3—C1—N2 117.6 (3) C5—C6—H6 119.5
N3—C1—S1 122.3 (2) C7—C6—H6 119.5
N2—C1—S1 120.1 (2) C6—C7—C8 118.9 (3)
N1—C2—C3 121.1 (3) C6—C7—H7 120.5
N1—C2—H2A 119.5 C8—C7—H7 120.5
C3—C2—H2A 119.5 C3—C8—C7 121.7 (3)
C8—C3—C4 118.2 (3) C3—C8—H8 119.2
C8—C3—C2 119.6 (3) C7—C8—H8 119.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N1 0.86 2.26 2.613 (4) 105
N2—H2···O1i 0.86 1.95 2.805 (3) 171
N3—H3B···S1ii 0.86 2.57 3.423 (3) 170
O1—H1A···S1 0.85 2.45 3.276 (2) 164
O1—H1B···S1i 0.85 2.44 3.284 (2) 172

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2428).

References

  1. Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem.4, 31–39. [DOI] [PubMed]
  2. Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem.42, 948–954. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489–o4490.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022769/cv2428sup1.cif

e-64-o1597-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022769/cv2428Isup2.hkl

e-64-o1597-Isup2.hkl (86.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES