Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 12;64(Pt 8):o1457. doi: 10.1107/S1600536808020977

N-(2-Furylcarbon­yl)piperidine-1-carbo­thio­amide

J Duque a,*, O Estévez-Hernández a, Yvonne Mascarenhas b, J Ellena b, Rodrigo S Corrêa b
PMCID: PMC2962087  PMID: 21203171

Abstract

The title compound, C11H14N2O2S, was synthesized from furoyl isothio­cyanate and piperidine in dry acetone. The thio­urea group is in the thio­amide form. The thio­urea group makes a dihedral angle of 53.9 (1)° with the furan carbonyl group. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming one-dimensional chains along the c axis. An intramolecular N—H⋯O hydrogen bond is also present.

Related literature

For general background, see: Aly et al. (2007); Estévez-Hernández et al. (2006, 2007); Koch (2001). For related structures, see: Dago et al. (1987); Plutin et al. (2000); Pérez et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).graphic file with name e-64-o1457-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O2S

  • M r = 238.3

  • Orthorhombic, Inline graphic

  • a = 31.6377 (15) Å

  • b = 8.6787 (4) Å

  • c = 8.5308 (3) Å

  • V = 2342.34 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.15 × 0.13 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4308 measured reflections

  • 2387 independent reflections

  • 1550 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.205

  • S = 1.10

  • 2387 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020977/ww2121sup1.cif

e-64-o1457-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020977/ww2121Isup2.hkl

e-64-o1457-Isup2.hkl (115KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.38 2.756 (3) 107
N1—H1⋯O1i 0.86 2.18 2.994 (4) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.

supplementary crystallographic information

Comment

Thiourea and its derivatives form a versatile family of ligands that are suitable to form complexes with ions of transition and post-transition metal through the S atom (Koch et al., 2001; Aly et al., 2007). The title compound shows outstanding complexation properties (Estévez-Hernández et al., 2006). The potential applications of this class of ligands as ionophores or chemical modifiers in amperometric sensors (Estévez-Hernández et al., 2007) have stimulated our interest in their crystal structure. The title compound crystallizes in the thioamide form. The main bond lengths and torsion angles are within the ranges obtained for similar compounds (Dago et al., 1987; Plutin et al., 2000). All the C–N bonds of thiourea fragment C1–N1, C2–N1 and C2–N2 (Table1) are in the range 1.415 (4)–1.327 (4) Å, intermediate between those expected for single and double C–N bonds (1.47 and 1.27 Å respectively). These results can be explained by the existence of resonance in this part of molecule (Pérez et al., 2008; Duque et al., 2008). The central thiourea fragment (N1—C2—S1—N2) makes dihedral angle of 53.9 (1)° with the furan carbonyl (C1—C3—C4—C5—C6—O2) group. The trans-cis geometry in the thiourea moiety is stabilized by the N1–H1···O2 intramolecular hydrogen bond (Fig.1 and Table 2). In the crystal structure symmetry related molecules are linked by N1–H1···O1 intermolecular hydrogen bonds to form one-dimensional chains along c axis (Figs. 2 and Table 2).

Experimental

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with piperidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 120–121°C). Elemental analysis (%) for C11H14N2O2S calculated: C 55.46, H 5.88, N 11.76, S 13.45; found: C 55.23, H 5.90, N 11.63, S 13.32.

Refinement

All H atoms were refined with Uiso(H)=1.2Ueq(C/N).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound (50% probability displacement ellipsoids). Intramolecular Hydrogen bonds (N1–H1···O2) are shown as dashed lines.

Fig. 2.

Fig. 2.

View of the crystal packing of the title compound projected down the b axis. Intermolecular hydrogen bonds (N1–H1···O1) form one-dimensional chains along c axis. The hydrogen bonds are shown as dotted lines.

Crystal data

C11H14N2O2S1 F000 = 1008
Mr = 238.3 Dx = 1.352 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2684 reflections
a = 31.6377 (15) Å θ = 2.9–26.4º
b = 8.6787 (4) Å µ = 0.26 mm1
c = 8.5308 (3) Å T = 294 K
V = 2342.34 (18) Å3 Prism, colourless
Z = 8 0.15 × 0.13 × 0.06 mm

Data collection

Nonius KappaCCD diffractometer Rint = 0.039
CCD rotation images, thick slices scans θmax = 26.4º
Absorption correction: none θmin = 3.4º
4308 measured reflections h = −39→39
2387 independent reflections k = −10→10
1550 reflections with I > 2σ(I) l = −10→10

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.1017P)2 + 1.0533P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.067 (Δ/σ)max < 0.001
wR(F2) = 0.205 Δρmax = 0.35 e Å3
S = 1.11 Δρmin = −0.35 e Å3
2387 reflections Extinction correction: none
145 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.05964 (9) 0.3587 (4) 0.2251 (4) 0.0455 (7)
C2 0.13205 (9) 0.2817 (4) 0.2882 (3) 0.0456 (8)
C3 0.01610 (9) 0.3667 (3) 0.2812 (3) 0.0442 (7)
C4 −0.01794 (10) 0.4368 (4) 0.2179 (4) 0.0561 (9)
H4 −0.0191 0.4904 0.1237 0.067*
C5 −0.05161 (11) 0.4118 (4) 0.3246 (5) 0.0678 (11)
H5 −0.0792 0.4468 0.314 0.081*
C6 −0.03631 (12) 0.3293 (5) 0.4421 (5) 0.0776 (12)
H6 −0.0521 0.2957 0.5275 0.093*
C7 0.13358 (12) 0.5686 (4) 0.2859 (5) 0.0627 (10)
H7A 0.1051 0.5591 0.3268 0.075*
H7B 0.1321 0.6226 0.1865 0.075*
C8 0.16045 (13) 0.6593 (4) 0.3996 (5) 0.0743 (11)
H8A 0.1586 0.6123 0.5026 0.089*
H8B 0.1495 0.7633 0.4075 0.089*
C9 0.20640 (14) 0.6656 (5) 0.3497 (6) 0.0890 (13)
H9A 0.209 0.7254 0.2541 0.107*
H9B 0.223 0.7157 0.4305 0.107*
C10 0.22286 (12) 0.5045 (5) 0.3226 (6) 0.0849 (13)
H10A 0.2515 0.5098 0.2827 0.102*
H10B 0.2235 0.4492 0.4213 0.102*
C11 0.19565 (11) 0.4186 (5) 0.2081 (5) 0.0703 (11)
H11A 0.197 0.4688 0.1065 0.084*
H11B 0.2062 0.3143 0.1962 0.084*
N1 0.08854 (7) 0.2942 (3) 0.3243 (3) 0.0458 (7)
H1 0.0799 0.2594 0.4131 0.055*
N2 0.15184 (8) 0.4140 (3) 0.2619 (3) 0.0527 (7)
O1 0.06909 (7) 0.4111 (3) 0.0970 (2) 0.0569 (7)
O2 0.00546 (7) 0.3001 (3) 0.4214 (3) 0.0651 (7)
S1 0.15400 (3) 0.10814 (10) 0.28587 (13) 0.0661 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0424 (16) 0.0478 (17) 0.0462 (19) 0.0006 (13) −0.0034 (13) −0.0070 (15)
C2 0.0397 (15) 0.056 (2) 0.0412 (17) −0.0007 (14) −0.0028 (13) −0.0054 (15)
C3 0.0435 (16) 0.0484 (17) 0.0406 (16) 0.0015 (13) −0.0001 (13) 0.0006 (14)
C4 0.0547 (19) 0.0541 (19) 0.060 (2) 0.0076 (16) −0.0086 (16) 0.0046 (17)
C5 0.0423 (18) 0.070 (2) 0.091 (3) 0.0139 (17) 0.0037 (18) −0.004 (2)
C6 0.050 (2) 0.092 (3) 0.090 (3) 0.018 (2) 0.023 (2) 0.017 (2)
C7 0.057 (2) 0.049 (2) 0.082 (3) 0.0016 (16) 0.0006 (18) 0.0000 (18)
C8 0.089 (3) 0.048 (2) 0.086 (3) −0.0092 (19) −0.006 (2) −0.005 (2)
C9 0.082 (3) 0.074 (3) 0.111 (3) −0.027 (2) −0.018 (3) 0.002 (3)
C10 0.053 (2) 0.084 (3) 0.118 (4) −0.017 (2) −0.011 (2) 0.009 (3)
C11 0.0438 (19) 0.079 (3) 0.088 (3) −0.0093 (18) 0.0112 (18) −0.006 (2)
N1 0.0374 (13) 0.0569 (17) 0.0430 (14) 0.0020 (11) 0.0016 (10) 0.0006 (12)
N2 0.0419 (15) 0.0509 (16) 0.0655 (18) −0.0043 (12) 0.0023 (12) −0.0071 (13)
O1 0.0537 (13) 0.0760 (17) 0.0411 (13) −0.0015 (11) 0.0017 (10) 0.0051 (11)
O2 0.0520 (13) 0.0813 (18) 0.0619 (15) 0.0160 (12) 0.0121 (11) 0.0164 (13)
S1 0.0485 (5) 0.0536 (6) 0.0962 (8) 0.0069 (4) −0.0001 (4) −0.0080 (5)

Geometric parameters (Å, °)

C1—O1 1.221 (4) C7—H7A 0.97
C1—N1 1.366 (4) C7—H7B 0.97
C1—C3 1.460 (4) C8—C9 1.516 (6)
C2—N2 1.327 (4) C8—H8A 0.97
C2—N1 1.415 (4) C8—H8B 0.97
C2—S1 1.659 (3) C9—C10 1.510 (7)
C3—C4 1.349 (4) C9—H9A 0.97
C3—O2 1.371 (4) C9—H9B 0.97
C4—C5 1.418 (5) C10—C11 1.500 (5)
C4—H4 0.93 C10—H10A 0.97
C5—C6 1.323 (5) C10—H10B 0.97
C5—H5 0.93 C11—N2 1.461 (4)
C6—O2 1.357 (4) C11—H11A 0.97
C6—H6 0.93 C11—H11B 0.97
C7—N2 1.475 (4) N1—H1 0.86
C7—C8 1.511 (5)
O1—C1—N1 122.9 (3) C9—C8—H8B 109.2
O1—C1—C3 120.4 (3) H8A—C8—H8B 107.9
N1—C1—C3 116.6 (3) C10—C9—C8 109.9 (3)
N2—C2—N1 115.5 (3) C10—C9—H9A 109.7
N2—C2—S1 125.9 (2) C8—C9—H9A 109.7
N1—C2—S1 118.6 (2) C10—C9—H9B 109.7
C4—C3—O2 110.1 (3) C8—C9—H9B 109.7
C4—C3—C1 130.1 (3) H9A—C9—H9B 108.2
O2—C3—C1 119.8 (3) C11—C10—C9 111.2 (3)
C3—C4—C5 105.9 (3) C11—C10—H10A 109.4
C3—C4—H4 127 C9—C10—H10A 109.4
C5—C4—H4 127 C11—C10—H10B 109.4
C6—C5—C4 107.1 (3) C9—C10—H10B 109.4
C6—C5—H5 126.5 H10A—C10—H10B 108
C4—C5—H5 126.5 N2—C11—C10 110.7 (3)
C5—C6—O2 111.0 (3) N2—C11—H11A 109.5
C5—C6—H6 124.5 C10—C11—H11A 109.5
O2—C6—H6 124.5 N2—C11—H11B 109.5
N2—C7—C8 110.0 (3) C10—C11—H11B 109.5
N2—C7—H7A 109.7 H11A—C11—H11B 108.1
C8—C7—H7A 109.7 C1—N1—C2 123.2 (3)
N2—C7—H7B 109.7 C1—N1—H1 118.4
C8—C7—H7B 109.7 C2—N1—H1 118.4
H7A—C7—H7B 108.2 C2—N2—C11 121.6 (3)
C7—C8—C9 112.2 (4) C2—N2—C7 125.4 (3)
C7—C8—H8A 109.2 C11—N2—C7 113.0 (3)
C9—C8—H8A 109.2 C6—O2—C3 105.9 (3)
C7—C8—H8B 109.2
O1—C1—C3—C4 −5.9 (5) N2—C2—N1—C1 59.9 (4)
N1—C1—C3—C4 172.5 (3) S1—C2—N1—C1 −121.4 (3)
O1—C1—C3—O2 176.5 (3) N1—C2—N2—C11 −173.8 (3)
N1—C1—C3—O2 −5.2 (4) S1—C2—N2—C11 7.6 (5)
O2—C3—C4—C5 −0.2 (4) N1—C2—N2—C7 7.8 (4)
C1—C3—C4—C5 −178.0 (3) S1—C2—N2—C7 −170.8 (3)
C3—C4—C5—C6 −0.5 (5) C10—C11—N2—C2 −120.6 (4)
C4—C5—C6—O2 1.0 (5) C10—C11—N2—C7 58.1 (4)
N2—C7—C8—C9 54.0 (5) C8—C7—N2—C2 122.3 (4)
C7—C8—C9—C10 −53.7 (5) C8—C7—N2—C11 −56.3 (4)
C8—C9—C10—C11 54.5 (5) C5—C6—O2—C3 −1.1 (5)
C9—C10—C11—N2 −56.8 (5) C4—C3—O2—C6 0.8 (4)
O1—C1—N1—C2 −0.1 (5) C1—C3—O2—C6 178.8 (3)
C3—C1—N1—C2 −178.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.38 2.756 (3) 107
N1—H1···O1i 0.86 2.18 2.994 (4) 157

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2121).

References

  1. Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem.28, 73–93.
  2. Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martin, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026.
  3. Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068. [DOI] [PMC free article] [PubMed]
  4. Enraf–Nonius (2000). COLLECT Enraf–Nonius BV, Delft, The Netherlands.
  5. Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494.
  6. Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I. & Reguera, E. (2006). Spectrochim. Acta A, 64, 961–971. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  10. Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o695–695. [DOI] [PMC free article] [PubMed]
  13. Plutin, A. M., Marquez, H., Ochoa, E., Morales, M., Sosa, M., Moran, L., Rodíguez, Y., Suarez, M., Martín, N. & Seoane, C. (2000). Tetrahedron, 56, 1533–1539.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020977/ww2121sup1.cif

e-64-o1457-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020977/ww2121Isup2.hkl

e-64-o1457-Isup2.hkl (115KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES