Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 12;64(Pt 8):o1465. doi: 10.1107/S1600536808020886

4-Hydr­oxy-4,4-diphenyl­butan-2-one

Dennis P Arnold a, John C McMurtrie a,*
PMCID: PMC2962095  PMID: 21203179

Abstract

The mol­ecules of the title compound, C16H16O2, display an intra­molecular O—H⋯O hydrogen bond between the hydroxyl donor and the ketone acceptor. Inter­molecular C—H⋯π inter­actions connect adjacent mol­ecules into chains that propagate parallel to the ac diagonal. The chains are arranged in sheets, and mol­ecules in adjacent sheets inter­act via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Rivett (1980); Paulson et al. (1973).graphic file with name e-64-o1465-scheme1.jpg

Experimental

Crystal data

  • C16H16O2

  • M r = 240.29

  • Monoclinic, Inline graphic

  • a = 9.8619 (2) Å

  • b = 9.2015 (2) Å

  • c = 14.3720 (3) Å

  • β = 102.098 (2)°

  • V = 1275.21 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • 0.35 × 0.30 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.933, T max = 0.984

  • 7361 measured reflections

  • 2935 independent reflections

  • 2144 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.066

  • S = 1.01

  • 2935 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020886/hg2422sup1.cif

e-64-o1465-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020886/hg2422Isup2.hkl

e-64-o1465-Isup2.hkl (144.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.910 (12) 2.016 (12) 2.7636 (12) 138.5 (11)
O2—H2O⋯O1i 0.910 (12) 2.385 (13) 3.0530 (12) 130.3 (10)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the Synthesis and Molecular Recognition Program, Faculty of Science, Queensland University of Technology, for financial support.

supplementary crystallographic information

Comment

The molecular stucture of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular hydrogen bond between the hydroxyl moiety and the ketone oxygen. The molecules are arranged in chains that propagate parallel to the ac diagonal via intermolecular CH···π interactions. There are two such interactions; the aromatic ring comprising C5—C10 is the CH donor and the ring comprising C11—C16 is the acceptor in both cases. Geometric parameters for the two interactions are as follows; C6—H6···C11—C16plane distance 2.731 Å with C5—C10plane···C11—C16plane dihedral angle 78.67° and C8—H8···C11—C16plane distance 2.947 Å with C5—C10plane···C11—C16plane dihedral angle 83.52°. The chains stack to form two-dimensional sheets in the crystal structure (Fig. 2). Intermolecular hydrogen bonds connect pairs of molecules from contiguous two-dimensional sheets. The pairwise intermolecular H-bond interactions and the intramolecular H-bond interactions are illustrated in Fig. 3.

Experimental

The title compound was prepared according to the procedure described by Rivett (1980) which is an adaptation of the method reported earlier by Paulson et al. (1973). Large colourless prismatic crystals of the compound were obtained by crystallization from an evaporating dichloromethane/methanol solution.

Refinement

C-bound H atoms were included in idealized positions and refined using a riding model approximation with methylene, methyl and aromatic bond lengths fixed at 0.99, 0.98 and 0.95 Å, respectively. Uiso(H) values were fixed at 1.2Ueq of the parent C atoms for methylene and aromatic H atoms and 1.5Ueq of the parent C atoms for methyl H atoms. The hydroxy H atom was located in a Fourier difference map and refined with an O—H bond length restraint of 0.98 Å and with Uiso fixed at 1.5Ueq of the parent O atom.

Figures

Fig. 1.

Fig. 1.

ORTEP depiction of the molecular structure with atom numbering scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(a) The molecules are arranged in sheets. Within the sheets the molecules are linked in one-dimensional chains by CH···π interactions between phenyl rings. Once such chain is highlighted with alternating molecules coloured green and blue. (b) Excerpt from (a) showing the propagation of the chain by CH···π interactions between phenyl rings of adjacent molecules.

Fig. 3.

Fig. 3.

Molecules in adjacent two-dimensional sheets are connected by intermolecular hydrogen bonds. The arrangement of these hydrogen bonds between a pair of molecules is illustrated (red/white dashed contact). The intramolecular hydrogen bonds are also shown (black/white dashed line). Symmetry code: (i) -x + 1, -y, -z + 2.

Crystal data

C16H16O2 F000 = 512
Mr = 240.29 Dx = 1.252 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3618 reflections
a = 9.8619 (2) Å θ = 2.9–28.7º
b = 9.2015 (2) Å µ = 0.08 mm1
c = 14.3720 (3) Å T = 150 (2) K
β = 102.098 (2)º Prism, colourless
V = 1275.21 (5) Å3 0.35 × 0.30 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Gemini diffractometer 2935 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2144 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
Detector resolution: 16.0774 pixels mm-1 θmax = 28.8º
T = 150(2) K θmin = 2.9º
ω scans h = −11→12
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) k = −12→12
Tmin = 0.933, Tmax = 0.984 l = −19→19
7361 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066   w = 1/[σ2(Fo2) + (0.01P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
2935 reflections Δρmax = 0.22 e Å3
167 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Crystal cleaved from larger prism.Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.55546 (14) 0.14657 (15) 0.76771 (9) 0.0373 (3)
H1A 0.6047 0.0538 0.7694 0.056*
H1B 0.6224 0.2266 0.7750 0.056*
H1C 0.4896 0.1562 0.7067 0.056*
C2 0.47849 (12) 0.15136 (14) 0.84736 (8) 0.0276 (3)
C3 0.42255 (12) 0.29752 (13) 0.86860 (8) 0.0256 (3)
H3A 0.3802 0.3449 0.8076 0.031*
H3B 0.5012 0.3589 0.9004 0.031*
C4 0.31411 (11) 0.29285 (13) 0.93164 (7) 0.0224 (2)
C5 0.27448 (11) 0.44508 (13) 0.95954 (8) 0.0227 (2)
C6 0.30596 (13) 0.57091 (14) 0.91585 (8) 0.0294 (3)
H6 0.3561 0.5648 0.8663 0.035*
C7 0.26527 (13) 0.70651 (14) 0.94343 (9) 0.0328 (3)
H7 0.2875 0.7920 0.9127 0.039*
C8 0.19261 (12) 0.71662 (14) 1.01542 (8) 0.0311 (3)
H8 0.1649 0.8089 1.0345 0.037*
C9 0.16028 (13) 0.59169 (15) 1.05965 (9) 0.0330 (3)
H9 0.1100 0.5983 1.1091 0.040*
C10 0.20081 (13) 0.45708 (14) 1.03224 (8) 0.0291 (3)
H10 0.1783 0.3719 1.0632 0.035*
C11 0.18229 (11) 0.21520 (13) 0.87881 (7) 0.0221 (2)
C12 0.10703 (12) 0.27142 (14) 0.79318 (8) 0.0282 (3)
H12 0.1379 0.3576 0.7677 0.034*
C13 −0.01221 (13) 0.20283 (15) 0.74497 (8) 0.0336 (3)
H13 −0.0627 0.2423 0.6869 0.040*
C14 −0.05786 (13) 0.07704 (15) 0.78118 (9) 0.0344 (3)
H14 −0.1390 0.0294 0.7477 0.041*
C15 0.01500 (13) 0.02096 (15) 0.86617 (9) 0.0341 (3)
H15 −0.0165 −0.0650 0.8915 0.041*
C16 0.13418 (12) 0.08994 (14) 0.91473 (8) 0.0281 (3)
H16 0.1834 0.0508 0.9733 0.034*
O1 0.46398 (10) 0.04232 (10) 0.89213 (6) 0.0388 (2)
O2 0.37110 (8) 0.22230 (9) 1.01953 (5) 0.02635 (19)
H2O 0.4104 (14) 0.1379 (14) 1.0054 (9) 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0371 (8) 0.0363 (8) 0.0426 (7) 0.0045 (6) 0.0178 (6) −0.0073 (6)
C2 0.0246 (6) 0.0290 (7) 0.0283 (6) 0.0047 (5) 0.0030 (5) −0.0038 (5)
C3 0.0260 (6) 0.0247 (6) 0.0271 (6) 0.0035 (5) 0.0077 (5) −0.0001 (5)
C4 0.0258 (6) 0.0221 (6) 0.0196 (5) 0.0044 (5) 0.0057 (4) 0.0023 (5)
C5 0.0219 (6) 0.0225 (6) 0.0230 (5) 0.0026 (5) 0.0032 (4) −0.0014 (5)
C6 0.0337 (7) 0.0256 (7) 0.0315 (6) 0.0036 (5) 0.0127 (5) 0.0010 (6)
C7 0.0379 (7) 0.0221 (6) 0.0391 (7) 0.0039 (6) 0.0099 (6) 0.0023 (6)
C8 0.0316 (7) 0.0245 (7) 0.0360 (6) 0.0080 (6) 0.0042 (5) −0.0057 (6)
C9 0.0348 (7) 0.0341 (7) 0.0331 (6) 0.0062 (6) 0.0141 (5) −0.0043 (6)
C10 0.0336 (7) 0.0259 (7) 0.0304 (6) 0.0016 (5) 0.0126 (5) 0.0008 (5)
C11 0.0247 (6) 0.0227 (6) 0.0200 (5) 0.0055 (5) 0.0074 (4) −0.0024 (5)
C12 0.0318 (6) 0.0310 (7) 0.0227 (6) 0.0070 (6) 0.0078 (5) 0.0012 (5)
C13 0.0318 (7) 0.0444 (8) 0.0230 (6) 0.0105 (6) 0.0018 (5) −0.0046 (6)
C14 0.0257 (6) 0.0414 (8) 0.0354 (7) 0.0009 (6) 0.0049 (5) −0.0143 (6)
C15 0.0333 (7) 0.0308 (7) 0.0396 (7) −0.0031 (6) 0.0110 (6) −0.0035 (6)
C16 0.0307 (7) 0.0270 (7) 0.0268 (6) 0.0027 (5) 0.0063 (5) 0.0007 (5)
O1 0.0515 (6) 0.0275 (5) 0.0405 (5) 0.0123 (4) 0.0166 (4) 0.0030 (4)
O2 0.0320 (5) 0.0241 (5) 0.0214 (4) 0.0077 (4) 0.0021 (3) 0.0016 (4)

Geometric parameters (Å, °)

C1—C2 1.5009 (16) C8—C9 1.3828 (18)
C1—H1A 0.9800 C8—H8 0.9500
C1—H1B 0.9800 C9—C10 1.3839 (17)
C1—H1C 0.9800 C9—H9 0.9500
C2—O1 1.2165 (15) C10—H10 0.9500
C2—C3 1.5089 (16) C11—C16 1.3866 (16)
C3—C4 1.5403 (15) C11—C12 1.3965 (15)
C3—H3A 0.9900 C12—C13 1.3855 (17)
C3—H3B 0.9900 C12—H12 0.9500
C4—O2 1.4266 (13) C13—C14 1.3826 (19)
C4—C5 1.5301 (16) C13—H13 0.9500
C4—C11 1.5373 (16) C14—C15 1.3808 (18)
C5—C6 1.3830 (16) C14—H14 0.9500
C5—C10 1.3964 (15) C15—C16 1.3884 (17)
C6—C7 1.3934 (17) C15—H15 0.9500
C6—H6 0.9500 C16—H16 0.9500
C7—C8 1.3795 (17) O2—H2O 0.910 (12)
C7—H7 0.9500
C2—C1—H1A 109.5 C6—C7—H7 120.0
C2—C1—H1B 109.5 C7—C8—C9 119.65 (12)
H1A—C1—H1B 109.5 C7—C8—H8 120.2
C2—C1—H1C 109.5 C9—C8—H8 120.2
H1A—C1—H1C 109.5 C8—C9—C10 120.33 (11)
H1B—C1—H1C 109.5 C8—C9—H9 119.8
O1—C2—C1 120.90 (12) C10—C9—H9 119.8
O1—C2—C3 122.65 (11) C9—C10—C5 120.69 (12)
C1—C2—C3 116.44 (11) C9—C10—H10 119.7
C2—C3—C4 114.99 (10) C5—C10—H10 119.7
C2—C3—H3A 108.5 C16—C11—C12 118.42 (11)
C4—C3—H3A 108.5 C16—C11—C4 121.49 (10)
C2—C3—H3B 108.5 C12—C11—C4 120.09 (11)
C4—C3—H3B 108.5 C13—C12—C11 120.70 (12)
H3A—C3—H3B 107.5 C13—C12—H12 119.6
O2—C4—C5 105.04 (8) C11—C12—H12 119.6
O2—C4—C11 111.18 (9) C14—C13—C12 120.15 (11)
C5—C4—C11 108.60 (9) C14—C13—H13 119.9
O2—C4—C3 109.89 (9) C12—C13—H13 119.9
C5—C4—C3 112.06 (10) C15—C14—C13 119.72 (12)
C11—C4—C3 110.00 (9) C15—C14—H14 120.1
C6—C5—C10 118.35 (11) C13—C14—H14 120.1
C6—C5—C4 123.61 (10) C14—C15—C16 120.17 (12)
C10—C5—C4 118.03 (10) C14—C15—H15 119.9
C5—C6—C7 121.00 (11) C16—C15—H15 119.9
C5—C6—H6 119.5 C11—C16—C15 120.84 (11)
C7—C6—H6 119.5 C11—C16—H16 119.6
C8—C7—C6 119.97 (12) C15—C16—H16 119.6
C8—C7—H7 120.0 C4—O2—H2O 107.4 (8)
O1—C2—C3—C4 −15.52 (17) C6—C5—C10—C9 0.08 (18)
C1—C2—C3—C4 165.07 (10) C4—C5—C10—C9 −179.04 (11)
C2—C3—C4—O2 57.09 (13) O2—C4—C11—C16 −2.22 (14)
C2—C3—C4—C5 173.47 (9) C5—C4—C11—C16 −117.30 (11)
C2—C3—C4—C11 −65.63 (12) C3—C4—C11—C16 119.73 (11)
O2—C4—C5—C6 133.63 (11) O2—C4—C11—C12 177.02 (10)
C11—C4—C5—C6 −107.35 (12) C5—C4—C11—C12 61.94 (13)
C3—C4—C5—C6 14.36 (15) C3—C4—C11—C12 −61.03 (13)
O2—C4—C5—C10 −47.29 (13) C16—C11—C12—C13 −0.53 (17)
C11—C4—C5—C10 71.72 (12) C4—C11—C12—C13 −179.79 (11)
C3—C4—C5—C10 −166.56 (10) C11—C12—C13—C14 −0.24 (18)
C10—C5—C6—C7 −0.05 (18) C12—C13—C14—C15 0.74 (18)
C4—C5—C6—C7 179.02 (11) C13—C14—C15—C16 −0.48 (19)
C5—C6—C7—C8 0.10 (19) C12—C11—C16—C15 0.79 (17)
C6—C7—C8—C9 −0.17 (19) C4—C11—C16—C15 −179.96 (11)
C7—C8—C9—C10 0.21 (19) C14—C15—C16—C11 −0.29 (18)
C8—C9—C10—C5 −0.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1 0.910 (12) 2.016 (12) 2.7636 (12) 138.5 (11)
O2—H2O···O1i 0.910 (12) 2.385 (13) 3.0530 (12) 130.3 (10)

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2422).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. CrystalMaker (2006). CrystalMaker CrystalMaker Software, Yarnton, Oxfordshire, UK.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  5. Paulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Educ.50, 216–217.
  6. Rivett, E. E. A. (1980). J. Chem. Educ.57, 751.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2008). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020886/hg2422sup1.cif

e-64-o1465-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020886/hg2422Isup2.hkl

e-64-o1465-Isup2.hkl (144.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES