Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 16;64(Pt 8):o1509. doi: 10.1107/S1600536808021636

4-[(E)-4-Bromo­benzyl­ideneamino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, K V Sujith b, P S Patil c, B Kalluraya b, A Muralidharan d, S M Dharmaprakash c
PMCID: PMC2962136  PMID: 21203218

Abstract

In the title mol­ecule, C10H9BrN4S, the dihedral angle between the triazole and benzene rings is 12.32 (19)°. An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. In the crystal packing, centrosymmetrically related mol­ecules are linked into a dimer by N—H⋯S hydrogen bonds, and the dimers are linked into a chain running along [1Inline graphic1] by Br⋯N short contacts [3.187 (3) Å]. The crystal packing is further strengthened by π–π inter­actions involving the triazole ring [centroid–centroid distance = 3.322 (2) Å].

Related literature

For the pharmacological activity of triazole compounds, see: Bekircan et al. (2006); Brandt et al. (2007); Holla et al. (1996, 2002); Yale et al. (1966). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).graphic file with name e-64-o1509-scheme1.jpg

Experimental

Crystal data

  • C10H9BrN4S

  • M r = 297.18

  • Triclinic, Inline graphic

  • a = 6.9239 (5) Å

  • b = 7.6072 (5) Å

  • c = 11.5982 (8) Å

  • α = 82.453 (5)°

  • β = 88.339 (5)°

  • γ = 68.204 (4)°

  • V = 562.18 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 100.0 (1) K

  • 0.32 × 0.31 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.265, T max = 0.629

  • 13535 measured reflections

  • 3252 independent reflections

  • 2538 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.121

  • S = 1.09

  • 3252 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.50 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021636/ci2629sup1.cif

e-64-o1509-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021636/ci2629Isup2.hkl

e-64-o1509-Isup2.hkl (156.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.87 2.48 3.321 (4) 164
C7—H7A⋯S1 0.93 2.50 3.223 (4) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Various 1,2,4-triazole derivatives are found to be associated with diverse pharmacological activity (Holla et al., 1996,2002). Schiff bases of 1,2,4-triazoles find diverse applications and extensive biological activity. Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4 triazoles show antiinflammatory, analgesic, antimicrobial and antidepressant activities (Yale et al., 1966; Bekircan et al., 2006). The incorporation of the 1,2,4-triazole unit into Schiff-base macrocycles is of considerable current interest as complexes of 1,2,4-triazoles are being developed for potential use in applications such as magnetic materials and photochemically driven molecular devices (Brandt et al., 2007). These applications prompted us to synthesize a novel Schiff base, derived from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4- triazole-3-thione with 4-bromo benzaldehyde.

In the title compound (Fig.1), the bond lengths and angles are found to have normal values (Allen et al., 1987). The dihedral angle between the triazole ring (N2/C8/N3/N4/C9) and the benzene ring (C1-C6) is 12.32 (19)°, indicating that they are slightly twisted from each other. An intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing, centrosymmetrically related molecules are linked into a dimer by N—H···S hydrogen bonds (Table 1). The dimers are linked into a chain running along the [1 1 1] by Br1···N4(1+x, -1+y, 1+z) short contacts [3.187 (3) Å]. The crystal packing is further strengthened by π-π interactions between the N2/C8/N3/N4/C9 (centroid Cg1) rings of the molecules at (x, y, z) and (1-x, 1-y, z) [centroid-centroid distance = 3.322 (2) Å].

Experimental

A mixture of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mol), 4-bromobenzaldehyde (0.01 mol) in ethanol (30 ml) and 2 drops of concentrated H2SO4 was refluxed for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement

H atoms were positioned geometrically [C-H = 0.93-0.96 %A and N-H = 0.87 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5eq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds and Br···N short contacts are shown as dashed lines.

Crystal data

C10H9BrN4S Z = 2
Mr = 297.18 F000 = 296
Triclinic, P1 Dx = 1.756 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.9239 (5) Å Cell parameters from 5175 reflections
b = 7.6072 (5) Å θ = 2.9–33.2º
c = 11.5982 (8) Å µ = 3.82 mm1
α = 82.453 (5)º T = 100.0 (1) K
β = 88.339 (5)º Plate, colourless
γ = 68.204 (4)º 0.32 × 0.31 × 0.12 mm
V = 562.18 (7) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3252 independent reflections
Radiation source: fine-focus sealed tube 2538 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.059
T = 100.0(1) K θmax = 30.0º
φ and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −9→9
Tmin = 0.265, Tmax = 0.629 k = −10→10
13535 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1826P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
3252 reflections Δρmax = 1.20 e Å3
146 parameters Δρmin = −1.50 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.07281 (6) 0.01690 (5) 0.76969 (3) 0.02379 (13)
S1 0.13495 (15) 0.36883 (13) 0.17836 (8) 0.0247 (2)
N1 0.5353 (5) 0.4917 (4) 0.2620 (2) 0.0212 (6)
N2 0.4008 (5) 0.5702 (4) 0.1661 (2) 0.0201 (6)
N3 0.1919 (5) 0.6408 (4) 0.0225 (3) 0.0243 (6)
N4 0.3110 (5) 0.7506 (4) −0.0027 (3) 0.0236 (6)
C1 0.8184 (6) 0.3339 (5) 0.4542 (3) 0.0237 (7)
H1A 0.8534 0.4121 0.3957 0.028*
C2 0.9486 (6) 0.2514 (5) 0.5516 (3) 0.0246 (7)
H2A 1.0698 0.2751 0.5590 0.029*
C3 0.8955 (6) 0.1335 (5) 0.6374 (3) 0.0214 (7)
C4 0.7153 (6) 0.0956 (5) 0.6288 (3) 0.0230 (7)
H4A 0.6830 0.0140 0.6862 0.028*
C5 0.5843 (6) 0.1829 (5) 0.5321 (3) 0.0224 (7)
H5A 0.4606 0.1626 0.5265 0.027*
C6 0.6348 (5) 0.2997 (5) 0.4439 (3) 0.0199 (7)
C7 0.4924 (5) 0.3838 (5) 0.3443 (3) 0.0199 (7)
H7A 0.3710 0.3592 0.3407 0.024*
C8 0.2417 (6) 0.5275 (5) 0.1234 (3) 0.0217 (7)
C9 0.4376 (6) 0.7049 (5) 0.0860 (3) 0.0211 (7)
C10 0.5990 (6) 0.7828 (5) 0.1022 (3) 0.0249 (7)
H10A 0.6335 0.8346 0.0280 0.037*
H10B 0.7209 0.6828 0.1377 0.037*
H10C 0.5478 0.8818 0.1514 0.037*
H1N3 0.1157 0.6542 −0.0384 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0287 (2) 0.02116 (18) 0.01825 (18) −0.00691 (14) −0.00647 (13) 0.00315 (12)
S1 0.0301 (5) 0.0264 (4) 0.0191 (4) −0.0150 (4) −0.0050 (3) 0.0069 (3)
N1 0.0242 (15) 0.0186 (13) 0.0177 (14) −0.0058 (12) −0.0047 (11) 0.0029 (11)
N2 0.0251 (14) 0.0185 (13) 0.0154 (13) −0.0085 (12) −0.0020 (11) 0.0041 (10)
N3 0.0318 (16) 0.0226 (14) 0.0179 (14) −0.0120 (13) −0.0029 (12) 0.0058 (11)
N4 0.0259 (15) 0.0242 (15) 0.0203 (14) −0.0109 (13) 0.0003 (12) 0.0040 (11)
C1 0.0278 (18) 0.0222 (16) 0.0194 (16) −0.0094 (14) 0.0024 (14) 0.0028 (13)
C2 0.0227 (17) 0.0252 (17) 0.0243 (18) −0.0076 (14) −0.0052 (14) −0.0009 (14)
C3 0.0253 (17) 0.0167 (15) 0.0164 (15) −0.0024 (13) −0.0035 (13) 0.0022 (12)
C4 0.0307 (19) 0.0178 (15) 0.0188 (16) −0.0083 (14) 0.0018 (14) 0.0007 (12)
C5 0.0255 (17) 0.0198 (16) 0.0225 (17) −0.0100 (14) −0.0034 (14) 0.0002 (13)
C6 0.0237 (16) 0.0176 (15) 0.0173 (15) −0.0074 (13) −0.0001 (13) 0.0003 (12)
C7 0.0239 (16) 0.0191 (15) 0.0158 (15) −0.0079 (13) −0.0044 (13) 0.0009 (12)
C8 0.0229 (16) 0.0210 (16) 0.0182 (16) −0.0057 (14) −0.0004 (13) 0.0006 (12)
C9 0.0252 (17) 0.0181 (15) 0.0195 (16) −0.0088 (14) −0.0006 (13) 0.0013 (12)
C10 0.0285 (18) 0.0230 (17) 0.0228 (17) −0.0116 (15) −0.0006 (14) 0.0047 (13)

Geometric parameters (Å, °)

Br1—C3 1.895 (3) C2—C3 1.386 (5)
S1—C8 1.686 (4) C2—H2A 0.93
N1—C7 1.278 (4) C3—C4 1.390 (5)
N1—N2 1.390 (4) C4—C5 1.392 (5)
N2—C8 1.380 (5) C4—H4A 0.93
N2—C9 1.381 (4) C5—C6 1.390 (5)
N3—C8 1.331 (4) C5—H5A 0.93
N3—N4 1.377 (4) C6—C7 1.455 (4)
N3—H1N3 0.87 C7—H7A 0.93
N4—C9 1.296 (5) C9—C10 1.473 (5)
C1—C2 1.391 (5) C10—H10A 0.96
C1—C6 1.400 (5) C10—H10B 0.96
C1—H1A 0.93 C10—H10C 0.96
C7—N1—N2 119.6 (3) C6—C5—H5A 119.4
C8—N2—C9 108.5 (3) C4—C5—H5A 119.4
C8—N2—N1 133.0 (3) C5—C6—C1 119.2 (3)
C9—N2—N1 118.1 (3) C5—C6—C7 118.3 (3)
C8—N3—N4 114.1 (3) C1—C6—C7 122.5 (3)
C8—N3—H1N3 137.0 N1—C7—C6 119.6 (3)
N4—N3—H1N3 108.1 N1—C7—H7A 120.2
C9—N4—N3 104.3 (3) C6—C7—H7A 120.2
C2—C1—C6 120.3 (3) N3—C8—N2 102.7 (3)
C2—C1—H1A 119.8 N3—C8—S1 126.6 (3)
C6—C1—H1A 119.8 N2—C8—S1 130.6 (3)
C3—C2—C1 119.2 (4) N4—C9—N2 110.4 (3)
C3—C2—H2A 120.4 N4—C9—C10 126.1 (3)
C1—C2—H2A 120.4 N2—C9—C10 123.5 (3)
C2—C3—C4 121.7 (3) C9—C10—H10A 109.5
C2—C3—Br1 119.8 (3) C9—C10—H10B 109.5
C4—C3—Br1 118.5 (3) H10A—C10—H10B 109.5
C3—C4—C5 118.4 (3) C9—C10—H10C 109.5
C3—C4—H4A 120.8 H10A—C10—H10C 109.5
C5—C4—H4A 120.8 H10B—C10—H10C 109.5
C6—C5—C4 121.2 (3)
C7—N1—N2—C8 −16.6 (6) C5—C6—C7—N1 −179.9 (3)
C7—N1—N2—C9 171.9 (3) C1—C6—C7—N1 0.7 (5)
C8—N3—N4—C9 −0.5 (4) N4—N3—C8—N2 0.9 (4)
C6—C1—C2—C3 0.7 (5) N4—N3—C8—S1 −177.3 (3)
C1—C2—C3—C4 −0.1 (5) C9—N2—C8—N3 −1.0 (4)
C1—C2—C3—Br1 179.1 (3) N1—N2—C8—N3 −173.0 (3)
C2—C3—C4—C5 −1.4 (5) C9—N2—C8—S1 177.2 (3)
Br1—C3—C4—C5 179.4 (3) N1—N2—C8—S1 5.1 (6)
C3—C4—C5—C6 2.3 (5) N3—N4—C9—N2 −0.2 (4)
C4—C5—C6—C1 −1.7 (5) N3—N4—C9—C10 180.0 (3)
C4—C5—C6—C7 179.0 (3) C8—N2—C9—N4 0.8 (4)
C2—C1—C6—C5 0.1 (5) N1—N2—C9—N4 174.2 (3)
C2—C1—C6—C7 179.5 (3) C8—N2—C9—C10 −179.4 (3)
N2—N1—C7—C6 179.2 (3) N1—N2—C9—C10 −6.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···S1i 0.87 2.48 3.321 (4) 164
C7—H7A···S1 0.93 2.50 3.223 (4) 134

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2629).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Brandt, C. D., Kitchen, J. A., Beckmann, U., White, N. G., Jameson, G. B. & Brooker, S. (2007). Supramol. Chem.19, 17–27.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Holla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Il Farmaco, 51, 793–799. [PubMed]
  7. Holla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem.37, 511–517. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Yale, H. L. & Piala, J. J. (1966). J. Med. Chem.9, 42–46. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021636/ci2629sup1.cif

e-64-o1509-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021636/ci2629Isup2.hkl

e-64-o1509-Isup2.hkl (156.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES