Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 16;64(Pt 8):o1516. doi: 10.1107/S1600536808021442

N-(Thia­zol-2-yl)acetamide

Uzma Yunus a,*, Muhammad Kalim Tahir a, Moazzam Hussain Bhatti a, Wai-Yeung Wong b
PMCID: PMC2962142  PMID: 21203224

Abstract

The title compound, C5H6N2OS, was synthesized from acetyl chloride and 2-amino­thia­zole in dry acetone. The asymmetric unit contains two mol­ecules. The crystal structure is stabilized by N—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Raman et al. (2000); Wang et al. (2008); Yunus et al. (2007 2008).graphic file with name e-64-o1516-scheme1.jpg

Experimental

Crystal data

  • C5H6N2OS

  • M r = 142.18

  • Monoclinic, Inline graphic

  • a = 16.0650 (12) Å

  • b = 11.3337 (8) Å

  • c = 7.0670 (5) Å

  • β = 101.908 (10)°

  • V = 1259.04 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 (2) K

  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.830, T max = 1.000 (expected range = 0.757–0.911)

  • 7429 measured reflections

  • 3024 independent reflections

  • 2602 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.104

  • S = 1.05

  • 3024 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021442/wk2088sup1.cif

e-64-o1516-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021442/wk2088Isup2.hkl

e-64-o1516-Isup2.hkl (148.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3i 0.88 2.04 2.897 (2) 163
N4—H4A⋯N1ii 0.88 2.07 2.938 (2) 171
C2—H2A⋯O2iii 0.95 2.41 3.350 (2) 171
C7—H7A⋯O1iv 0.95 2.46 3.382 (2) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

supplementary crystallographic information

Comment

The thiazole ring and its derivatives are of great importance in biological systems due to their vast range of biological activities such as anti-inflammatory, analgesic and antipyretic (Raman et al., 2000). On the other hand amide compounds have extensive applications in the pharmaceutical industry (Wang et al., 2008). As a part of our research the title compound (I) has been synthesized and its crystal structure is reported herein (Yunus et al., 2007; 2008).

The title compound (I) crystallizes in a monoclinic space group with two molecules in asymmetric unit. All the bond lengths and angles are within the normal ranges. The molecules are stabilized by intermolecular hydrogen bonds N—H···N, and C—H···O (Table 1, Fig 2).

Experimental

A mixture of acetyl chloride (26 mmol) and 2-aminothiazole (26 mmol) was refluxed in dry acetone (60 ml) for two hours. After cooling, the mixture was poured into acidified cold water. The resulting yellow solid was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from ethyl acetate.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I) showing N—H···N hydrogen bonding.

Crystal data

C5H6N2OS F000 = 592
Mr = 142.18 Dx = 1.500 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7429 reflections
a = 16.0650 (12) Å θ = 2.6–28.3º
b = 11.3337 (8) Å µ = 0.42 mm1
c = 7.0670 (5) Å T = 173 (2) K
β = 101.908 (10)º Block, pale yellow
V = 1259.04 (16) Å3 0.30 × 0.26 × 0.22 mm
Z = 8

Data collection

Bruker SMART1000 CCD diffractometer 3024 independent reflections
Radiation source: fine-focus sealed tube 2602 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.024
T = 173(2) K θmax = 28.3º
ω and φ scans θmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 1999) h = −21→18
Tmin = 0.830, Tmax = 1.000 k = −15→12
7429 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5928P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3024 reflections Δρmax = 0.44 e Å3
163 parameters Δρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22544 (11) 0.26865 (16) 0.3481 (3) 0.0287 (4)
H1A 0.2073 0.1965 0.2843 0.034*
C2 0.17369 (11) 0.35988 (15) 0.3648 (3) 0.0276 (4)
H2A 0.1143 0.3575 0.3127 0.033*
C3 0.29472 (10) 0.43764 (14) 0.5196 (2) 0.0223 (3)
C4 0.43344 (10) 0.50546 (16) 0.6861 (3) 0.0281 (4)
C5 0.48077 (11) 0.61150 (18) 0.7800 (3) 0.0362 (4)
H5A 0.5407 0.5910 0.8272 0.054*
H5B 0.4560 0.6372 0.8887 0.054*
H5C 0.4765 0.6755 0.6852 0.054*
C6 0.28449 (12) 0.53644 (16) 1.0659 (3) 0.0313 (4)
H6A 0.3085 0.4598 1.0867 0.038*
C7 0.32581 (11) 0.63693 (16) 1.1264 (3) 0.0290 (4)
H7A 0.3831 0.6374 1.1960 0.035*
C8 0.20282 (10) 0.71411 (14) 0.9848 (2) 0.0227 (3)
C9 0.06151 (10) 0.78011 (16) 0.8300 (3) 0.0277 (4)
C10 0.00676 (12) 0.88668 (17) 0.7755 (3) 0.0381 (4)
H10A −0.0506 0.8618 0.7116 0.057*
H10B 0.0312 0.9361 0.6872 0.057*
H10C 0.0038 0.9318 0.8922 0.057*
N1 0.21293 (9) 0.45737 (13) 0.4630 (2) 0.0254 (3)
N2 0.34869 (8) 0.52329 (13) 0.6143 (2) 0.0252 (3)
H2B 0.3273 0.5934 0.6293 0.030*
N3 0.27956 (8) 0.73976 (13) 1.0806 (2) 0.0255 (3)
N4 0.14391 (8) 0.80175 (12) 0.9218 (2) 0.0246 (3)
H4A 0.1602 0.8756 0.9418 0.030*
O1 0.46679 (8) 0.40975 (12) 0.6735 (2) 0.0386 (3)
O2 0.03563 (8) 0.67920 (12) 0.7966 (2) 0.0380 (3)
S1 0.32900 (3) 0.30062 (4) 0.45821 (7) 0.02647 (13)
S2 0.18167 (3) 0.56560 (4) 0.94536 (7) 0.02913 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0280 (8) 0.0239 (8) 0.0334 (9) −0.0035 (6) 0.0047 (7) −0.0030 (7)
C2 0.0213 (8) 0.0266 (8) 0.0329 (9) −0.0019 (6) 0.0008 (6) −0.0002 (7)
C3 0.0200 (7) 0.0211 (7) 0.0250 (8) 0.0019 (6) 0.0030 (6) 0.0021 (6)
C4 0.0200 (8) 0.0303 (9) 0.0322 (9) 0.0014 (6) 0.0016 (7) 0.0026 (7)
C5 0.0232 (8) 0.0368 (10) 0.0448 (11) −0.0038 (7) −0.0015 (7) −0.0044 (8)
C6 0.0300 (9) 0.0250 (8) 0.0376 (10) 0.0057 (7) 0.0038 (7) 0.0037 (7)
C7 0.0237 (8) 0.0296 (9) 0.0321 (9) 0.0033 (7) 0.0024 (7) 0.0052 (7)
C8 0.0217 (7) 0.0215 (7) 0.0247 (8) −0.0020 (6) 0.0044 (6) 0.0014 (6)
C9 0.0184 (7) 0.0280 (9) 0.0352 (9) −0.0010 (6) 0.0021 (6) 0.0005 (7)
C10 0.0240 (8) 0.0327 (10) 0.0540 (12) 0.0040 (7) −0.0004 (8) 0.0011 (9)
N1 0.0185 (6) 0.0249 (7) 0.0314 (8) 0.0000 (5) 0.0016 (5) −0.0005 (6)
N2 0.0184 (6) 0.0222 (7) 0.0329 (8) 0.0005 (5) 0.0005 (5) −0.0019 (6)
N3 0.0200 (6) 0.0242 (7) 0.0305 (8) −0.0007 (5) 0.0009 (5) 0.0032 (6)
N4 0.0182 (6) 0.0195 (7) 0.0342 (8) −0.0011 (5) 0.0008 (5) −0.0003 (5)
O1 0.0232 (6) 0.0317 (7) 0.0557 (9) 0.0058 (5) −0.0039 (6) −0.0007 (6)
O2 0.0220 (6) 0.0276 (7) 0.0590 (9) −0.0047 (5) −0.0042 (6) −0.0023 (6)
S1 0.0229 (2) 0.0210 (2) 0.0349 (2) 0.00316 (14) 0.00479 (16) −0.00010 (15)
S2 0.0261 (2) 0.0205 (2) 0.0385 (3) −0.00185 (15) 0.00132 (17) −0.00081 (16)

Geometric parameters (Å, °)

C1—C2 1.347 (2) C6—S2 1.7271 (19)
C1—S1 1.7236 (18) C6—H6A 0.9500
C1—H1A 0.9500 C7—N3 1.384 (2)
C2—N1 1.385 (2) C7—H7A 0.9500
C2—H2A 0.9500 C8—N3 1.311 (2)
C3—N1 1.311 (2) C8—N4 1.381 (2)
C3—N2 1.379 (2) C8—S2 1.7284 (17)
C3—S1 1.7326 (16) C9—O2 1.223 (2)
C4—O1 1.221 (2) C9—N4 1.371 (2)
C4—N2 1.366 (2) C9—C10 1.497 (2)
C4—C5 1.502 (3) C10—H10A 0.9800
C5—H5A 0.9800 C10—H10B 0.9800
C5—H5B 0.9800 C10—H10C 0.9800
C5—H5C 0.9800 N2—H2B 0.8800
C6—C7 1.343 (3) N4—H4A 0.8800
C2—C1—S1 110.78 (13) N3—C7—H7A 122.2
C2—C1—H1A 124.6 N3—C8—N4 121.06 (15)
S1—C1—H1A 124.6 N3—C8—S2 115.59 (12)
C1—C2—N1 115.51 (15) N4—C8—S2 123.35 (12)
C1—C2—H2A 122.2 O2—C9—N4 121.01 (16)
N1—C2—H2A 122.2 O2—C9—C10 123.13 (16)
N1—C3—N2 121.20 (15) N4—C9—C10 115.86 (15)
N1—C3—S1 115.26 (12) C9—C10—H10A 109.5
N2—C3—S1 123.49 (12) C9—C10—H10B 109.5
O1—C4—N2 121.52 (16) H10A—C10—H10B 109.5
O1—C4—C5 123.60 (15) C9—C10—H10C 109.5
N2—C4—C5 114.88 (15) H10A—C10—H10C 109.5
C4—C5—H5A 109.5 H10B—C10—H10C 109.5
C4—C5—H5B 109.5 C3—N1—C2 109.91 (14)
H5A—C5—H5B 109.5 C4—N2—C3 123.68 (15)
C4—C5—H5C 109.5 C4—N2—H2B 118.2
H5A—C5—H5C 109.5 C3—N2—H2B 118.2
H5B—C5—H5C 109.5 C8—N3—C7 109.65 (15)
C7—C6—S2 110.75 (13) C9—N4—C8 123.68 (14)
C7—C6—H6A 124.6 C9—N4—H4A 118.2
S2—C6—H6A 124.6 C8—N4—H4A 118.2
C6—C7—N3 115.69 (15) C1—S1—C3 88.54 (8)
C6—C7—H7A 122.2 C6—S2—C8 88.31 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···N3i 0.88 2.04 2.897 (2) 163
N4—H4A···N1ii 0.88 2.07 2.938 (2) 171
C2—H2A···O2iii 0.95 2.41 3.350 (2) 171
C7—H7A···O1iv 0.95 2.46 3.382 (2) 165

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2088).

References

  1. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  3. Raman, R., Razavi, H. & Kelly, J. W. (2000). Org. Lett.2, 3289–3292. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun.38, 1028–1035.
  6. Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.
  7. Yunus, U., Tahir, M. K., Bhatti, M. H. & Wong, W.-Y. (2008). Acta Cryst. E64, o722. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021442/wk2088sup1.cif

e-64-o1516-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021442/wk2088Isup2.hkl

e-64-o1516-Isup2.hkl (148.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES