Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):o1521. doi: 10.1107/S1600536808021715

2,2-Dichloro-N-(4-chloro­phenyl­sulfon­yl)­acetamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, B P Sowmya a, Hartmut Fuess b
PMCID: PMC2962147  PMID: 21203229

Abstract

In the crystal structure of the title compound (N4CPSDCAA), C8H6Cl3NO3S, the conformations of the N—H and C=O bonds in the SO2—NH—CO—C group are trans to each other, similar to those observed in 2,2-dichloro-N-(phenyl­sulfon­yl)­acetamide (NPSDCAA), 2,2-dichloro-N-(4-methyl­phenyl­sulfon­yl)acetamide (N4MPSDCAA) and N-(4-chloro­phenyl­sulfon­yl)-2,2,2-trimethyl­acetamide (N4CPSTMAA), with similar bond parameters. The –SNHCOC– unit in N4CPSDCAA is essentially planar and makes a dihedral angle of 79.67 (5)° with the benzene ring, comparable to 79.75 (8)° in NPSDCAA, 81.02 (5)° in N4MPSDCAA and 82.2 (1)° in N4CPSTMAA. The mol­ecules in N4CPSDCAA are linked into layers parallel to the (001) plane by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003, 2006); Gowda, Foro, Nirmala et al. (2008); Gowda, Foro, Sowmya et al. (2008).graphic file with name e-64-o1521-scheme1.jpg

Experimental

Crystal data

  • C8H6Cl3NO3S

  • M r = 302.55

  • Orthorhombic, Inline graphic

  • a = 9.5909 (5) Å

  • b = 10.1750 (5) Å

  • c = 23.256 (1) Å

  • V = 2269.49 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 299 (2) K

  • 0.32 × 0.28 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.745, T max = 0.926

  • 10378 measured reflections

  • 2309 independent reflections

  • 1642 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.073

  • S = 1.08

  • 2309 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021715/ci2630sup1.cif

e-64-o1521-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021715/ci2630Isup2.hkl

e-64-o1521-Isup2.hkl (113.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 1.97 2.814 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides and substituted amides, in the present work, the structure of N-(4-chlorophenylsulfonyl)-2,2-dichloroacetamide (N4CPSDCAA) has been determined (Gowda et al., 2003, 2006; Gowda, Foro, Nirmala et al., 2008; Gowda, Foro, Sowmya et al., 2008). The conformations of the N—H and C═O bonds of the SO2—NH—CO—C group in N4CPSDCAA are trans to each other (Fig. 1), similar to those observed in N-(phenylsulfonyl)-2,2-dichloroacetamide (NPSDCAA), N-(4-methylphenylsulfonyl)-2,2-dichloroacetamide (N4MPSDCAA) (Gowda, Foro, Nirmala et al., 2008) and (4-chlorophenylsulfonyl)-2,2,2- trimethylacetamide (N4CPSTMAA) (Gowda, Foro, Sowmya et al., 2008). The bond parameters in N4CPSDCAA are similar to those in NPSDCAA, N4MPSDCAA, N4CPSTMAA (Gowda, Foro, Nirmala et al., 2008; Gowda, Foro, Sowmya et al., 2008), N-(aryl)-2,2-dichloro- acetamides (Gowda et al., 2006) and 4-chlorobenzenesulfonamide (Gowda et al., 2003).

The packing diagram of N4CPSDCAA showing the N—H···O hydrogen bonds (Table 1) involved in the formation of layers parallel to the (0 0 1) plane is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide (0.10 mole) with excess dichloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by slow evaporation of an ethanolic solution.

Refinement

H atoms were positioned with idealized geometry (C-H = 0.93 or 0.98 Å, N-H = 0.86 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). To improve R1, wR2 and S values (1 0 2) reflection was omitted during the refinement

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C8H6Cl3NO3S F000 = 1216
Mr = 302.55 Dx = 1.771 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5145 reflections
a = 9.5909 (5) Å θ = 2.2–28.0º
b = 10.1750 (5) Å µ = 0.98 mm1
c = 23.256 (1) Å T = 299 (2) K
V = 2269.49 (19) Å3 Plate, colourless
Z = 8 0.32 × 0.28 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 2309 independent reflections
Radiation source: fine-focus sealed tube 1642 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
T = 299(2) K θmax = 26.4º
ω and φ scans θmin = 3.1º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −11→11
Tmin = 0.745, Tmax = 0.926 k = −10→12
10378 measured reflections l = −28→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.073   w = 1/[σ2(Fo2) + (0.0279P)2 + 1.2816P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
2309 reflections Δρmax = 0.34 e Å3
145 parameters Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1931 (2) 0.2061 (2) 0.10986 (9) 0.0312 (5)
C2 0.0826 (2) 0.2583 (2) 0.07911 (10) 0.0397 (6)
H2 −0.0087 0.2353 0.0882 0.048*
C3 0.1095 (3) 0.3449 (3) 0.03482 (11) 0.0464 (6)
H3 0.0364 0.3802 0.0136 0.056*
C4 0.2445 (3) 0.3787 (2) 0.02219 (9) 0.0431 (6)
C5 0.3549 (3) 0.3264 (3) 0.05226 (10) 0.0471 (6)
H5 0.4458 0.3499 0.0430 0.056*
C6 0.3295 (2) 0.2384 (2) 0.09643 (10) 0.0405 (6)
H6 0.4031 0.2015 0.1168 0.049*
C7 0.2795 (2) 0.2659 (2) 0.24629 (9) 0.0275 (5)
C8 0.2532 (2) 0.3590 (2) 0.29700 (9) 0.0332 (5)
H8 0.1789 0.4210 0.2869 0.040*
N1 0.16103 (17) 0.21068 (16) 0.22462 (7) 0.0283 (4)
H1N 0.0830 0.2314 0.2404 0.034*
O1 0.01558 (16) 0.06430 (16) 0.16706 (7) 0.0436 (4)
O2 0.26697 (17) 0.01306 (15) 0.17698 (7) 0.0424 (4)
O3 0.39439 (14) 0.24435 (16) 0.22705 (6) 0.0379 (4)
Cl1 0.27646 (9) 0.48942 (8) −0.03310 (3) 0.0686 (2)
Cl2 0.40650 (7) 0.44634 (6) 0.31294 (3) 0.04543 (17)
Cl3 0.20101 (7) 0.26485 (7) 0.35760 (2) 0.04963 (19)
S1 0.15710 (6) 0.10591 (5) 0.16960 (2) 0.03174 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0315 (12) 0.0341 (12) 0.0280 (11) −0.0011 (9) 0.0005 (9) −0.0033 (9)
C2 0.0314 (12) 0.0452 (14) 0.0425 (13) −0.0007 (11) −0.0017 (10) 0.0020 (11)
C3 0.0477 (15) 0.0485 (15) 0.0431 (14) 0.0070 (12) −0.0074 (12) 0.0085 (12)
C4 0.0581 (16) 0.0403 (14) 0.0310 (12) −0.0046 (12) 0.0046 (12) 0.0020 (11)
C5 0.0397 (14) 0.0629 (17) 0.0386 (13) −0.0102 (13) 0.0071 (11) −0.0001 (12)
C6 0.0312 (13) 0.0557 (15) 0.0346 (12) −0.0004 (11) −0.0008 (10) 0.0001 (11)
C7 0.0255 (12) 0.0289 (11) 0.0280 (10) 0.0023 (9) −0.0023 (9) 0.0051 (9)
C8 0.0322 (12) 0.0322 (12) 0.0352 (11) 0.0030 (9) −0.0028 (10) −0.0014 (10)
N1 0.0200 (9) 0.0353 (10) 0.0296 (9) 0.0004 (7) 0.0020 (7) −0.0014 (8)
O1 0.0366 (9) 0.0498 (10) 0.0443 (9) −0.0153 (8) −0.0038 (7) 0.0004 (8)
O2 0.0464 (10) 0.0329 (9) 0.0481 (10) 0.0080 (8) −0.0005 (8) −0.0007 (7)
O3 0.0220 (8) 0.0523 (10) 0.0394 (9) 0.0023 (7) −0.0003 (7) −0.0074 (8)
Cl1 0.0915 (6) 0.0667 (5) 0.0475 (4) −0.0120 (4) 0.0065 (4) 0.0189 (4)
Cl2 0.0487 (4) 0.0371 (3) 0.0505 (4) −0.0099 (3) −0.0066 (3) −0.0048 (3)
Cl3 0.0497 (4) 0.0641 (4) 0.0350 (3) −0.0146 (3) 0.0070 (3) −0.0037 (3)
S1 0.0303 (3) 0.0313 (3) 0.0337 (3) −0.0030 (2) −0.0011 (2) −0.0007 (2)

Geometric parameters (Å, °)

C1—C6 1.385 (3) C6—H6 0.93
C1—C2 1.385 (3) C7—O3 1.209 (2)
C1—S1 1.757 (2) C7—N1 1.364 (3)
C2—C3 1.380 (3) C7—C8 1.534 (3)
C2—H2 0.93 C8—Cl2 1.758 (2)
C3—C4 1.371 (4) C8—Cl3 1.776 (2)
C3—H3 0.93 C8—H8 0.98
C4—C5 1.376 (4) N1—S1 1.6659 (17)
C4—Cl1 1.737 (2) N1—H1N 0.86
C5—C6 1.384 (3) O1—S1 1.4230 (16)
C5—H5 0.93 O2—S1 1.4257 (16)
C6—C1—C2 121.0 (2) O3—C7—N1 123.20 (19)
C6—C1—S1 120.11 (17) O3—C7—C8 123.12 (19)
C2—C1—S1 118.73 (17) N1—C7—C8 113.68 (17)
C3—C2—C1 119.2 (2) C7—C8—Cl2 109.69 (15)
C3—C2—H2 120.4 C7—C8—Cl3 108.86 (15)
C1—C2—H2 120.4 Cl2—C8—Cl3 109.94 (12)
C4—C3—C2 119.8 (2) C7—C8—H8 109.4
C4—C3—H3 120.1 Cl2—C8—H8 109.4
C2—C3—H3 120.1 Cl3—C8—H8 109.4
C3—C4—C5 121.3 (2) C7—N1—S1 124.49 (15)
C3—C4—Cl1 119.2 (2) C7—N1—H1N 117.8
C5—C4—Cl1 119.4 (2) S1—N1—H1N 117.8
C4—C5—C6 119.5 (2) O1—S1—O2 120.86 (10)
C4—C5—H5 120.3 O1—S1—N1 104.11 (9)
C6—C5—H5 120.3 O2—S1—N1 108.35 (9)
C5—C6—C1 119.2 (2) O1—S1—C1 109.09 (10)
C5—C6—H6 120.4 O2—S1—C1 109.54 (10)
C1—C6—H6 120.4 N1—S1—C1 103.40 (9)
C6—C1—C2—C3 −0.7 (3) N1—C7—C8—Cl3 70.2 (2)
S1—C1—C2—C3 175.18 (18) O3—C7—N1—S1 0.5 (3)
C1—C2—C3—C4 −0.5 (4) C8—C7—N1—S1 179.96 (14)
C2—C3—C4—C5 1.1 (4) C7—N1—S1—O1 173.55 (16)
C2—C3—C4—Cl1 −179.21 (19) C7—N1—S1—O2 43.71 (19)
C3—C4—C5—C6 −0.4 (4) C7—N1—S1—C1 −72.47 (18)
Cl1—C4—C5—C6 179.85 (19) C6—C1—S1—O1 −167.61 (18)
C4—C5—C6—C1 −0.7 (4) C2—C1—S1—O1 16.5 (2)
C2—C1—C6—C5 1.3 (3) C6—C1—S1—O2 −33.3 (2)
S1—C1—C6—C5 −174.49 (18) C2—C1—S1—O2 150.84 (17)
O3—C7—C8—Cl2 10.0 (3) C6—C1—S1—N1 82.0 (2)
N1—C7—C8—Cl2 −169.47 (14) C2—C1—S1—N1 −93.83 (19)
O3—C7—C8—Cl3 −110.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.86 1.97 2.814 (2) 169

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2630).

References

  1. Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1522. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1279. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  4. Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  5. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  6. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021715/ci2630sup1.cif

e-64-o1521-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021715/ci2630Isup2.hkl

e-64-o1521-Isup2.hkl (113.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES