Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):o1526–o1527. doi: 10.1107/S1600536808021685

Ethyl 4-(2-bromo-5-fluoro­phen­yl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, M Babu b, P S Patil c, B Kalluraya b, S M Dharmaprakash c
PMCID: PMC2962151  PMID: 21203233

Abstract

In the title mol­ecule, C20H18BrFN2O2S, the pyrimidine ring adopts a flattened envelope conformation. The halogenated benzene ring is orthogonal to the planar part of the pyrimidine ring [dihedral angle = 89.05 (4)°], while the other phenyl ring is oriented at an angle of 85.14 (5)°. The ethoxy group is disordered over two orientations with site occpancies of ca 0.869 (4) and 0.131 (4). Intra­molecular C—H⋯Br and C—H⋯O hydrogen bonds generate S(5) and S(6) ring motifs. The crystal structure is stabilized by inter­molecular N—H⋯S, C—H⋯F, C—H⋯O and C—H⋯Br hydrogen bonds.

Related literature

For the biological activity of pyrimidinone derivatives, see: Atwal (1990); Matsuda & Hirao (1965); Sadanandam et al. (1992). For the synthetic procedure, see: Steele et al. (1998); Manjual et al. (2004); Kappe (1993); Wipf & Cunningham (1995). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).graphic file with name e-64-o1526-scheme1.jpg

Experimental

Crystal data

  • C20H18BrFN2O2S

  • M r = 449.33

  • Triclinic, Inline graphic

  • a = 10.0455 (1) Å

  • b = 10.2969 (1) Å

  • c = 10.3714 (1) Å

  • α = 64.286 (1)°

  • β = 83.110 (1)°

  • γ = 78.796 (1)°

  • V = 947.36 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 100 (2) K

  • 0.41 × 0.35 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.451, T max = 0.631

  • 30132 measured reflections

  • 5490 independent reflections

  • 4895 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.084

  • S = 1.04

  • 5490 reflections

  • 267 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021685/ci2628sup1.cif

e-64-o1526-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021685/ci2628Isup2.hkl

e-64-o1526-Isup2.hkl (263.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 0.85 2.51 3.327 (2) 162
C1—H1⋯F1ii 0.95 2.52 3.370 (2) 148
C7—H7⋯Br1 1.00 2.69 3.265 (2) 117
C20—H20⋯O1iii 0.95 2.44 3.368 (3) 164
C21—H21A⋯O2 0.98 2.11 2.737 (3) 120
C21—H21B⋯Br1iii 0.98 2.91 3.886 (2) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic, Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

3,4-Dihydropyrimidinones have drawn wide-spread attention due to their pharmaceutical applications. A variety of these derivatives have been screened for antihypertension (Atwal, 1990), antibacterial (Matsuda & Hirao, 1965) and anti-inflammatory activities (Sadanandam et al., 1992). The common synthetic routes to these compounds generally involve multi step transformations, which are essentially based on the Biginelli condensation methodology (Steele et al., 1998). These pyrimidinones are also associated with calcium channel blocking activity (Manjual et al., 2004). In 1893, Biginelli reported the first synthesis of dihydropyrimidines by a simple one-pot condensation reaction of ethyl acetoacetate, benzaldehyde and urea. In the following decades the original cyclo-condensation reaction has been extended widely to include variations in all three components, allowing access to a large number of muti functionalized dihydropyrimidinone derivatives (Kappe, 1993). Biginelli reaction has recently attracted a great deal of attention and several improved procedures for the preparation of dihydropyrimidinones have been reported within the past few years. Several solid-phase modifications of the Biginelli reaction suitable for the combinatorial chemistry have also been described (Wipf & Cunningham, 1995).

Bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen et al., 1987). The pyrimidine ring adopts a flattened envelope conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.067 (2) Å, θ = 132.5 (16)° and φ = 237 (2)°. The C1-C6 and C15-C20 phenyl rings form dihedral angles of 89.05 (4)° and 85.14 (5)°, respectively, with the N1/N2/C7/C8/C13/C14 plane. Intramolecular C—H···Br and C—H···O hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein et al., 1995), respectively.

The crystal structure is stabilized by intermolecular N—H···S, C—H···F, C—H···O and C—H···Br hydrogen bonds (Table 1 and Fig.2).

Experimental

A mixture of 2-bromo-5-fluorobenzaldehyde (0.01 mol, 2.0301 g), ethyl acetoacetate [0.015 mol, 2 g (2 ml)], phenylthiourea (0.01 mol, 1.5215 g) and concentrated H2SO4 (2 drops) in absolute alcohol (10 ml) taken in a beaker (100 ml) was put inside a microwave oven for 4 minutes at 160 Watts (25% MW power). The reaction mixture was then allowed to stand at room temperature and the product formed was filtered, washed with ethanol followed by water and dried. Further purification was done by recrystallization from ethanol (yield = 77%, m.p = 442–445 K). Composition calculated (found): C 53.45 (53.34), H 4.008 (3.92), N 6.236 (6.15), S 7.1269 (7.03)%.

Refinement

The ethylcarboxylate group is disordered over two orienatations with refined occupancies of 0.869 (4):0.131 (4). The displacement parameters of atoms C11A and C12A were restrained to an approximate isotropic behaviour. The corresponding C—O and C—C distances in the two disorder components were restrained to be equal. All H atoms were positioned geometrically [C-H = 0.95–1.00 Å and N-H = 0.85 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5eq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Crystal data

C20H18BrFN2O2S Z = 2
Mr = 449.33 F000 = 456
Triclinic, P1 Dx = 1.575 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 10.0455 (1) Å Cell parameters from 9996 reflections
b = 10.2969 (1) Å θ = 2.2–37.5º
c = 10.3714 (1) Å µ = 2.31 mm1
α = 64.286 (1)º T = 100 (2) K
β = 83.110 (1)º Block, colourless
γ = 78.796 (1)º 0.41 × 0.35 × 0.22 mm
V = 947.36 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5490 independent reflections
Radiation source: fine-focus sealed tube 4895 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 100.0(1) K θmax = 30.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −14→14
Tmin = 0.451, Tmax = 0.631 k = −14→14
30132 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.084   w = 1/[σ2(Fo2) + (0.0443P)2 + 0.6872P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
5490 reflections Δρmax = 1.01 e Å3
267 parameters Δρmin = −0.66 e Å3
15 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.718042 (18) 0.65172 (2) −0.42386 (2) 0.02506 (6)
S1 0.96029 (4) 0.37018 (5) 0.22541 (4) 0.01943 (9)
F1 1.01209 (13) 0.03875 (13) −0.17700 (14) 0.0324 (3)
O1 0.50168 (14) 0.40666 (18) −0.20152 (16) 0.0313 (3)
N1 0.81604 (15) 0.43472 (17) 0.00399 (15) 0.0196 (3)
H1N1 0.8781 0.4859 −0.0370 0.023*
N2 0.73979 (14) 0.26404 (16) 0.21844 (15) 0.0163 (3)
C1 0.87086 (17) 0.2259 (2) −0.13630 (19) 0.0209 (3)
H1 0.8684 0.1647 −0.0365 0.025*
C2 0.94486 (18) 0.1774 (2) −0.2313 (2) 0.0236 (3)
C3 0.95266 (18) 0.2600 (2) −0.3770 (2) 0.0231 (3)
H3 1.0052 0.2215 −0.4387 0.028*
C4 0.88166 (17) 0.4003 (2) −0.43062 (19) 0.0204 (3)
H4 0.8841 0.4596 −0.5308 0.024*
C5 0.80672 (16) 0.45529 (19) −0.33865 (19) 0.0184 (3)
C6 0.79770 (16) 0.37081 (19) −0.19184 (18) 0.0175 (3)
C7 0.71816 (17) 0.42662 (19) −0.08487 (18) 0.0176 (3)
H7 0.6680 0.5269 −0.1394 0.021*
C8 0.61745 (16) 0.32950 (19) 0.00875 (19) 0.0182 (3)
C9 0.50415 (18) 0.3362 (2) −0.0741 (2) 0.0221 (3)
C13 0.63308 (16) 0.24993 (19) 0.15063 (19) 0.0178 (3)
C14 0.83214 (16) 0.35640 (18) 0.14314 (17) 0.0158 (3)
C15 0.73718 (16) 0.19955 (18) 0.37368 (17) 0.0165 (3)
C16 0.81160 (19) 0.0635 (2) 0.4482 (2) 0.0250 (4)
H16 0.8712 0.0153 0.3985 0.030*
C17 0.7980 (2) −0.0018 (2) 0.5970 (2) 0.0339 (5)
H17 0.8481 −0.0955 0.6498 0.041*
C18 0.7111 (2) 0.0701 (3) 0.6680 (2) 0.0335 (5)
H18 0.7008 0.0245 0.7694 0.040*
C19 0.6396 (2) 0.2069 (3) 0.5931 (2) 0.0290 (4)
H19 0.5817 0.2561 0.6429 0.035*
C20 0.65228 (17) 0.2732 (2) 0.44396 (19) 0.0206 (3)
H20 0.6033 0.3676 0.3914 0.025*
C21 0.5474 (2) 0.1379 (2) 0.2489 (2) 0.0261 (4)
H21A 0.5000 0.1072 0.1922 0.039*
H21B 0.4807 0.1805 0.3027 0.039*
H21C 0.6057 0.0531 0.3159 0.039*
O2 0.40143 (16) 0.26503 (19) 0.00591 (18) 0.0270 (4) 0.869 (4)
C11 0.2885 (2) 0.2674 (3) −0.0718 (3) 0.0290 (5) 0.869 (4)
H11A 0.2726 0.3622 −0.1566 0.035* 0.869 (4)
H11B 0.2050 0.2570 −0.0093 0.035* 0.869 (4)
C12 0.3186 (3) 0.1458 (3) −0.1191 (3) 0.0319 (5) 0.869 (4)
H12A 0.2419 0.1492 −0.1712 0.048* 0.869 (4)
H12B 0.3329 0.0519 −0.0350 0.048* 0.869 (4)
H12C 0.4006 0.1568 −0.1819 0.048* 0.869 (4)
O2A 0.4326 (11) 0.2257 (8) −0.0408 (13) 0.0270 (4) 0.131 (4)
C11A 0.3310 (13) 0.2655 (15) −0.1426 (13) 0.018 (3) 0.131 (4)
H11C 0.3703 0.2613 −0.2331 0.021* 0.131 (4)
H11D 0.2784 0.3638 −0.1632 0.021* 0.131 (4)
C12A 0.247 (2) 0.147 (2) −0.060 (2) 0.047 (5) 0.131 (4)
H12D 0.1690 0.1610 −0.1156 0.071* 0.131 (4)
H12E 0.2146 0.1512 0.0314 0.071* 0.131 (4)
H12F 0.3024 0.0519 −0.0417 0.071* 0.131 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02414 (10) 0.02346 (10) 0.02129 (10) 0.00017 (6) 0.00032 (6) −0.00558 (7)
S1 0.02016 (19) 0.0262 (2) 0.01355 (19) −0.01177 (15) 0.00010 (14) −0.00673 (16)
F1 0.0345 (6) 0.0264 (6) 0.0341 (7) 0.0048 (5) −0.0013 (5) −0.0146 (5)
O1 0.0241 (7) 0.0465 (9) 0.0253 (7) −0.0044 (6) −0.0057 (5) −0.0162 (7)
N1 0.0233 (7) 0.0245 (7) 0.0142 (7) −0.0131 (6) 0.0005 (5) −0.0076 (6)
N2 0.0161 (6) 0.0205 (7) 0.0137 (6) −0.0080 (5) 0.0022 (5) −0.0072 (5)
C1 0.0198 (8) 0.0302 (9) 0.0189 (8) −0.0095 (7) 0.0022 (6) −0.0144 (7)
C2 0.0215 (8) 0.0237 (9) 0.0272 (9) −0.0014 (6) −0.0021 (7) −0.0127 (8)
C3 0.0197 (8) 0.0279 (9) 0.0271 (9) −0.0068 (7) 0.0052 (6) −0.0167 (8)
C4 0.0186 (7) 0.0270 (9) 0.0190 (8) −0.0086 (6) 0.0022 (6) −0.0116 (7)
C5 0.0160 (7) 0.0203 (8) 0.0194 (8) −0.0038 (6) −0.0017 (6) −0.0083 (7)
C6 0.0155 (7) 0.0232 (8) 0.0177 (8) −0.0049 (6) −0.0016 (5) −0.0111 (7)
C7 0.0185 (7) 0.0219 (8) 0.0145 (7) −0.0044 (6) −0.0018 (5) −0.0090 (6)
C8 0.0160 (7) 0.0229 (8) 0.0204 (8) −0.0053 (6) 0.0006 (6) −0.0130 (7)
C9 0.0187 (8) 0.0247 (9) 0.0289 (9) −0.0017 (6) −0.0039 (6) −0.0167 (8)
C13 0.0155 (7) 0.0221 (8) 0.0205 (8) −0.0068 (6) 0.0028 (6) −0.0127 (7)
C14 0.0171 (7) 0.0176 (7) 0.0146 (7) −0.0062 (6) 0.0020 (5) −0.0077 (6)
C15 0.0163 (7) 0.0185 (7) 0.0140 (7) −0.0073 (6) 0.0011 (5) −0.0046 (6)
C16 0.0263 (9) 0.0183 (8) 0.0283 (10) −0.0045 (7) −0.0025 (7) −0.0070 (7)
C17 0.0405 (11) 0.0222 (9) 0.0298 (11) −0.0139 (8) −0.0113 (9) 0.0036 (8)
C18 0.0395 (11) 0.0444 (12) 0.0150 (9) −0.0294 (10) 0.0002 (7) −0.0021 (8)
C19 0.0257 (9) 0.0476 (12) 0.0210 (9) −0.0191 (8) 0.0087 (7) −0.0181 (9)
C20 0.0169 (7) 0.0270 (9) 0.0192 (8) −0.0065 (6) 0.0025 (6) −0.0107 (7)
C21 0.0262 (9) 0.0348 (10) 0.0230 (9) −0.0188 (8) 0.0058 (7) −0.0134 (8)
O2 0.0213 (7) 0.0337 (9) 0.0305 (9) −0.0104 (6) −0.0044 (6) −0.0144 (7)
C11 0.0200 (10) 0.0367 (13) 0.0351 (14) −0.0058 (9) −0.0053 (9) −0.0179 (11)
C12 0.0316 (12) 0.0354 (13) 0.0353 (13) −0.0111 (10) −0.0007 (10) −0.0187 (11)
O2A 0.0213 (7) 0.0337 (9) 0.0305 (9) −0.0104 (6) −0.0044 (6) −0.0144 (7)
C11A 0.016 (5) 0.032 (6) 0.006 (5) −0.007 (4) −0.003 (4) −0.007 (4)
C12A 0.037 (8) 0.059 (9) 0.038 (8) −0.026 (7) −0.014 (6) −0.003 (6)

Geometric parameters (Å, °)

Br1—C5 1.8982 (17) C15—C20 1.383 (2)
S1—C14 1.6867 (16) C16—C17 1.392 (3)
F1—C2 1.353 (2) C16—H16 0.95
O1—C9 1.201 (2) C17—C18 1.386 (4)
N1—C14 1.325 (2) C17—H17 0.95
N1—C7 1.463 (2) C18—C19 1.377 (3)
N1—H1N1 0.85 C18—H18 0.95
N2—C14 1.378 (2) C19—C20 1.394 (3)
N2—C13 1.412 (2) C19—H19 0.95
N2—C15 1.450 (2) C20—H20 0.95
C1—C2 1.371 (2) C21—H21A 0.98
C1—C6 1.424 (3) C21—H21B 0.98
C1—H1 0.95 C21—H21C 0.98
C2—C3 1.377 (3) O2—C11 1.459 (3)
C3—C4 1.380 (3) C11—C12 1.499 (3)
C3—H3 0.95 C11—H11A 0.99
C4—C5 1.388 (2) C11—H11B 0.99
C4—H4 0.95 C12—H12A 0.98
C5—C6 1.390 (2) C12—H12B 0.98
C6—C7 1.537 (2) C12—H12C 0.98
C7—C8 1.510 (2) O2A—C11A 1.431 (12)
C7—H7 1.00 C11A—C12A 1.501 (15)
C8—C13 1.349 (2) C11A—H11C 0.99
C8—C9 1.481 (2) C11A—H11D 0.99
C9—O2A 1.359 (3) C12A—H12D 0.98
C9—O2 1.361 (2) C12A—H12E 0.98
C13—C21 1.505 (2) C12A—H12F 0.98
C15—C16 1.382 (2)
C14—N1—C7 127.83 (14) C15—C16—C17 119.04 (18)
C14—N1—H1N1 113.1 C15—C16—H16 120.5
C7—N1—H1N1 118.5 C17—C16—H16 120.5
C14—N2—C13 121.82 (14) C18—C17—C16 119.8 (2)
C14—N2—C15 118.93 (13) C18—C17—H17 120.1
C13—N2—C15 118.34 (13) C16—C17—H17 120.1
C2—C1—C6 117.93 (17) C19—C18—C17 120.74 (18)
C2—C1—H1 121.0 C19—C18—H18 119.6
C6—C1—H1 121.0 C17—C18—H18 119.6
F1—C2—C1 117.18 (17) C18—C19—C20 119.90 (19)
F1—C2—C3 118.70 (16) C18—C19—H19 120.1
C1—C2—C3 124.11 (18) C20—C19—H19 120.1
C2—C3—C4 117.87 (16) C15—C20—C19 119.04 (18)
C2—C3—H3 121.1 C15—C20—H20 120.5
C4—C3—H3 121.1 C19—C20—H20 120.5
C3—C4—C5 120.24 (17) C13—C21—H21A 109.5
C3—C4—H4 119.9 C13—C21—H21B 109.5
C5—C4—H4 119.9 H21A—C21—H21B 109.5
C4—C5—C6 121.62 (16) C13—C21—H21C 109.5
C4—C5—Br1 116.51 (13) H21A—C21—H21C 109.5
C6—C5—Br1 121.87 (13) H21B—C21—H21C 109.5
C5—C6—C1 118.20 (15) C9—O2—C11 116.68 (18)
C5—C6—C7 123.85 (15) O2—C11—C12 110.62 (19)
C1—C6—C7 117.90 (15) O2—C11—H11A 109.5
N1—C7—C8 109.92 (14) C12—C11—H11A 109.5
N1—C7—C6 107.99 (13) O2—C11—H11B 109.5
C8—C7—C6 112.44 (13) C12—C11—H11B 109.5
N1—C7—H7 108.8 H11A—C11—H11B 108.1
C8—C7—H7 108.8 C11—C12—H12A 109.5
C6—C7—H7 108.8 C11—C12—H12B 109.5
C13—C8—C9 126.36 (16) H12A—C12—H12B 109.5
C13—C8—C7 121.87 (14) C11—C12—H12C 109.5
C9—C8—C7 111.77 (15) H12A—C12—H12C 109.5
O1—C9—O2A 107.4 (5) H12B—C12—H12C 109.5
O1—C9—O2 123.54 (17) C9—O2A—C11A 111.1 (8)
O1—C9—C8 121.38 (17) O2A—C11A—C12A 99.2 (10)
O2A—C9—C8 124.7 (5) O2A—C11A—H11C 111.9
O2—C9—C8 114.94 (16) C12A—C11A—H11C 111.9
C8—C13—N2 120.36 (15) O2A—C11A—H11D 111.9
C8—C13—C21 125.54 (15) C12A—C11A—H11D 111.9
N2—C13—C21 114.07 (15) H11C—C11A—H11D 109.6
N1—C14—N2 117.58 (14) C11A—C12A—H12D 109.5
N1—C14—S1 121.21 (12) C11A—C12A—H12E 109.5
N2—C14—S1 121.21 (12) H12D—C12A—H12E 109.5
C16—C15—C20 121.44 (16) C11A—C12A—H12F 109.5
C16—C15—N2 120.12 (15) H12D—C12A—H12F 109.5
C20—C15—N2 118.31 (15) H12E—C12A—H12F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···S1i 0.85 2.51 3.327 (2) 162
C1—H1···F1ii 0.95 2.52 3.370 (2) 148
C7—H7···Br1 1.00 2.69 3.265 (2) 117
C20—H20···O1iii 0.95 2.44 3.368 (3) 164
C21—H21A···O2 0.98 2.11 2.737 (3) 120
C21—H21B···Br1iii 0.98 2.91 3.886 (2) 171

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2628).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Atwal, K. S. (1990). J. Med. Chem.33, 1510–1515. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Kappe, C. O. (1993). Tetrahedron, 49, 6937–6963.
  7. Manjual, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun.34, 2665–2671.
  8. Matsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195–1197.
  9. Sadanandam, Y. S., Shetty, M. M. & Diwan, P. V. (1992). Eur. J. Med. Chem.27, 87–92.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Steele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett.39, 9315–9318.
  13. Wipf, P. & Cunningham, A. (1995). Tetrahedron Lett.36, 7819–7822.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021685/ci2628sup1.cif

e-64-o1526-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021685/ci2628Isup2.hkl

e-64-o1526-Isup2.hkl (263.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES