Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):o1533. doi: 10.1107/S1600536808021855

N-(Fluoren-9-ylmethoxy­carbon­yl)-l-isoleucine

Kazuhiko Yamada a,*, Daisuke Hashizume b, Tadashi Shimizu a, Kenzo Deguchi a
PMCID: PMC2962158  PMID: 21203238

Abstract

In the crystal structure of the title compound [systematic name fluoren-9-ylmethyl N-(1-carb­oxy-2-methyl­butyl)carbamate], C21H23NO4, the mol­ecular plane of the O=C—NH—Cα unit is slightly pyramidalized. The N atom deviates from the basal plane by 0.2086 (12) Å. The O=C—N—Cα torsion angle is −17.2 (2)°, and the C—N and O=C bond lengths are 1.3675 (17) and 1.2122 (17) Å, respectively. Apparently the character of the sp 2 hybrids of the mol­ecular plane is, to some extent, reduced. The crystal structure exhibits two inter­molecular hydrogen bonds (O—H⋯O and N—H⋯O), in which the hydr­oxy O atom acts as a donor to the carbonyl group and an acceptor of the amide group, respectively.

Related literature

For related literature on the crystal structures of N-α-fluoren-9-ylmethoxy­carbonyl-protected amino acids, see: Valle et al. (1984); Yamada, Hashizume & Shimizu (2008); Yamada, Hashizume, Shimizu et al. (2008).graphic file with name e-64-o1533-scheme1.jpg

Experimental

Crystal data

  • C21H23NO4

  • M r = 353.40

  • Orthorhombic, Inline graphic

  • a = 5.3337 (2) Å

  • b = 13.6965 (4) Å

  • c = 25.2514 (9) Å

  • V = 1844.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.77 × 0.06 × 0.04 mm

Data collection

  • Rigaku AFC-8 diffractometer with Saturn70 CCD

  • Absorption correction: none

  • 19825 measured reflections

  • 3351 independent reflections

  • 2993 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.084

  • S = 1.03

  • 3351 reflections

  • 327 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021855/is2313sup1.cif

e-64-o1533-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021855/is2313Isup2.hkl

e-64-o1533-Isup2.hkl (164.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2i 0.88 (2) 1.77 (2) 2.6511 (14) 176 (2)
N1—H1N⋯O1ii 0.88 (2) 2.18 (2) 3.0433 (16) 167.6 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

KY thanks the Ministry of Education, Science, Sports, Culture and Technology (MEXT) of Japan for funding this work [Young Scientists (B), 20750022]. TS appreciates support from the World Premier International Research Center Initiative on Materials Nanoarchitronics at NIMS, from MEXT. KD acknowledges the Nanotechnology Support of MEXT.

supplementary crystallographic information

Comment

The fluoren-9-ylmethoxycarbonyl (Fmoc) group is commonly used for protecting the terminal amine of the peptide for the current solid-phase peptide synthesis protocol. This is because cleavage of the Fmoc protecting group is easily achieved by mild basis conditions, e.g., piperidine, but it is very stable under acidic conditions. The crystal structures of N-α-Fmoc-protected-L-alanine monohydrate (Valle et al., 1984), -O-t-butyl-L-serine (Yamada, Hashizume, Shimizu, Ohiki & Yokoyama, 2008) and –L-leucine (Yamada, Hashizume & Shimizu, 2008) have been studied. In this communication, we will report the structure of N-α-Fmoc-L-isoleucine, (I) (Fig. 1).

It is interesting to compare the present structure with that of the analog of the title compound, i.e., N-α-Fmoc-protected-L-leucine, (II). A large fraction of the bond distances and angles, and torsion angles of (I) are consistent with those of (II) except for the following points. First, the orientation of the carboxyl group around the C1—C6 bond is found to be opposite. The torsion angle of O2—C6—C1—N1 for (I) is -6.3 (2)°, while the corresponding angle of (II) is 159.29 (17)°. Second, the angle between the fluorine ring and the NC(=O)O plane is quite different. For example, the torsion angle of C7—O4—C8—C9 and O4—C8—C9—C10 are 121.17 (13) and -73.17 (14)°, respectively, for (I). The corresponding torsion angles of (II), on the other hand, are 93.78 (16) and 60.54 (17)°, respectively. Third, it can be seen that the O3—C7—N1—C1 plane of (I) is slightly pyramided. The N1 atom deviates from the basal plane (C1, C7, H1N) by 0.2086 (12) Å. Moreover, the distances of the N1—C7 and O3—C7 bonds are 1.3675 (17) and 1.2122 (17) Å, respectively, which are approximately 0.026 longer and 0.010 Å shorter than the corresponding bond lengths of (II), respectively. Apparently, the sp2 character of the N1 atom is, to some extent, reduced.

In addition, hydrogen-bond environments are slightly different between the two Fmoc-protected L-amino acids. The crystal of (I) contains two intermolecular hydrogen bonds (Table 1), while that of (II) has three hydrogen bonds. For (I), atom O1 forms two hydrogen bonds with O2 and N1, as shown in Figure 2. The molecules, which related by translation along the a axis are assembled via the N1—H1N···O1 hydrogen bonds to form a one dimensional tape structure. The tapes around the 21 axis, which is parallel to the a axis, are joined together, then the column structure is formed.

Experimental

A powdered sample of the title compound (I) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and was used for the sample preparation without further purifications. Colorless needle like crystals of (I) were obtained from a saturated dichloromethane solution.

Refinement

All H atoms were found on a difference map and were refined applying isotropic temperature factors.

The refined C—H, N—H or O—H dimensions are in the normal range: 0.975 (19)–1.015 (19) Å and 104.8 (10)–113.8 (11)° for C—H and C/N—C—H, respectively, for methyne; 0.942 (17)–1.01 (2) Å, 106.6 (13)–111.4 (12)° and 107.1 (18)–108.6 (14)° for C—H, C/O—C—H and H—C—H for methylene; 0.98 (3)–1.03 (3) Å, 109.5 (11)–112.8 (13)° and 104 (2)–111 (2)° for C—H, C—C—H and H—C—H, respectively, for methyl; 0.96 (2)–1.005 (19) Å and 117.7 (11)–123.1 (11)° for C—H and C—C—H, respectively, for aromatic; 0.88 (2) Å and 115.3 (12)–116.5 (12)° for N—H and C—N—H, respectively, for amide; 0.88 (2) Å and 108.7 (15)° for O—H and C—O—H, respectively, for hydroxyl. The range of the Uiso values of the H atoms are 0.016 (4)–0.067 (8) Å2.

In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). The hydrogen atoms were omitted for clarity, except for those forming the hydrogen bonds. The hydrogen bonds are shown as blue and green broken lines for N—H···O and O—H···O bonds, respectively.

Crystal data

C21H23NO4 F000 = 752
Mr = 353.40 Dx = 1.272 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 19896 reflections
a = 5.3337 (2) Å θ = 1.6–31.0º
b = 13.6965 (4) Å µ = 0.09 mm1
c = 25.2514 (9) Å T = 90 K
V = 1844.70 (11) Å3 Needle, colourless
Z = 4 0.77 × 0.06 × 0.04 mm

Data collection

Rigaku AFC-8 with Saturn70 CCD diffractometer 3351 independent reflections
Radiation source: fine-focus rotating anode 2993 reflections with I > 2σ(I)
Monochromator: confocal Rint = 0.043
Detector resolution: 28.5714 pixels mm-1 θmax = 31.0º
T = 90 K θmin = 1.6º
ω scans h = −7→7
Absorption correction: none k = −13→19
19825 measured reflections l = −36→36

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 All H-atom parameters refined
wR(F2) = 0.084   w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2178P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3351 reflections Δρmax = 0.23 e Å3
327 parameters Δρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. All Friedel pairs were merged, and all f''s of containing atoms were set to zero.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.0029 (2) 0.12876 (8) 0.48657 (4) 0.0236 (2)
H1H −0.038 (4) 0.1865 (16) 0.5004 (8) 0.040 (6)*
O2 0.3719 (2) 0.19896 (8) 0.47355 (4) 0.0287 (2)
O3 0.4252 (2) 0.06814 (8) 0.34059 (4) 0.0254 (2)
O4 0.83023 (19) 0.09577 (8) 0.36430 (4) 0.0219 (2)
N1 0.5644 (2) 0.03926 (9) 0.42480 (4) 0.0201 (2)
H1N 0.683 (4) 0.0588 (14) 0.4465 (7) 0.028 (5)*
C1 0.3145 (3) 0.03122 (10) 0.44681 (5) 0.0198 (3)
H1 0.201 (4) 0.0187 (13) 0.4152 (7) 0.029 (5)*
C2 0.2942 (3) −0.05077 (10) 0.48868 (5) 0.0221 (3)
H2 0.124 (4) −0.0497 (14) 0.5026 (7) 0.025 (5)*
C3 0.4615 (4) −0.03098 (13) 0.53677 (6) 0.0322 (4)
H3A 0.641 (5) −0.0353 (16) 0.5239 (9) 0.045 (6)*
H3B 0.433 (4) 0.0382 (16) 0.5491 (8) 0.043 (6)*
C4 0.4141 (5) −0.10079 (16) 0.58280 (7) 0.0429 (5)
H4A 0.524 (5) −0.0821 (19) 0.6146 (10) 0.063 (7)*
H4B 0.449 (5) −0.1707 (17) 0.5734 (9) 0.050 (6)*
H4C 0.237 (6) −0.1000 (19) 0.5925 (10) 0.067 (8)*
C5 0.3466 (4) −0.14964 (12) 0.46325 (7) 0.0321 (4)
H5A 0.235 (4) −0.1587 (15) 0.4308 (9) 0.043 (6)*
H5B 0.302 (4) −0.2030 (14) 0.4887 (8) 0.034 (5)*
H5C 0.526 (5) −0.1554 (16) 0.4525 (8) 0.040 (6)*
C6 0.2335 (3) 0.12921 (10) 0.47018 (5) 0.0209 (3)
C7 0.5913 (3) 0.06860 (10) 0.37335 (5) 0.0195 (3)
C8 0.8909 (3) 0.12808 (11) 0.31097 (5) 0.0214 (3)
H8A 1.018 (4) 0.0822 (13) 0.2966 (7) 0.023 (4)*
H8B 0.746 (3) 0.1242 (12) 0.2898 (6) 0.016 (4)*
C9 0.9917 (3) 0.23248 (10) 0.31308 (5) 0.0218 (3)
H9 1.136 (4) 0.2340 (14) 0.3393 (7) 0.033 (5)*
C10 0.7894 (3) 0.30772 (10) 0.32413 (5) 0.0227 (3)
C11 0.6461 (3) 0.32177 (11) 0.36923 (6) 0.0273 (3)
H11 0.678 (4) 0.2802 (14) 0.4013 (7) 0.032 (5)*
C12 0.4624 (3) 0.39449 (12) 0.36893 (6) 0.0307 (3)
H12 0.365 (4) 0.4056 (14) 0.4011 (8) 0.037 (5)*
C13 0.4225 (3) 0.45181 (12) 0.32390 (7) 0.0307 (3)
H13 0.289 (4) 0.5019 (16) 0.3241 (8) 0.038 (5)*
C14 0.5681 (3) 0.43873 (11) 0.27881 (6) 0.0272 (3)
H14 0.540 (4) 0.4779 (14) 0.2461 (8) 0.033 (5)*
C15 0.7524 (3) 0.36682 (10) 0.27912 (5) 0.0222 (3)
C16 0.9326 (3) 0.33767 (10) 0.23824 (5) 0.0218 (3)
C17 0.9758 (3) 0.37521 (11) 0.18767 (5) 0.0251 (3)
H17 0.877 (4) 0.4283 (15) 0.1741 (7) 0.033 (5)*
C18 1.1730 (3) 0.33647 (11) 0.15819 (6) 0.0271 (3)
H18 1.201 (4) 0.3628 (13) 0.1225 (7) 0.027 (4)*
C19 1.3197 (3) 0.26081 (11) 0.17784 (6) 0.0270 (3)
H19 1.452 (4) 0.2330 (14) 0.1573 (7) 0.030 (5)*
C20 1.2715 (3) 0.22127 (11) 0.22789 (6) 0.0248 (3)
H20 1.374 (4) 0.1663 (14) 0.2398 (7) 0.029 (5)*
C21 1.0792 (3) 0.26106 (10) 0.25795 (5) 0.0219 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0187 (5) 0.0237 (5) 0.0284 (5) 0.0005 (4) 0.0011 (4) −0.0042 (4)
O2 0.0264 (6) 0.0232 (5) 0.0365 (5) −0.0060 (5) 0.0050 (5) −0.0056 (4)
O3 0.0191 (5) 0.0341 (5) 0.0231 (4) −0.0028 (5) −0.0025 (4) 0.0014 (4)
O4 0.0169 (5) 0.0277 (5) 0.0210 (4) −0.0022 (4) −0.0003 (4) 0.0047 (4)
N1 0.0162 (5) 0.0243 (5) 0.0199 (5) −0.0010 (5) −0.0006 (4) 0.0006 (4)
C1 0.0166 (6) 0.0209 (6) 0.0219 (6) −0.0012 (5) 0.0009 (5) −0.0011 (5)
C2 0.0196 (6) 0.0214 (6) 0.0254 (6) −0.0013 (5) 0.0031 (5) 0.0008 (5)
C3 0.0373 (10) 0.0340 (8) 0.0253 (7) −0.0043 (7) −0.0023 (6) 0.0050 (6)
C4 0.0577 (13) 0.0424 (10) 0.0287 (8) −0.0021 (10) −0.0003 (8) 0.0117 (7)
C5 0.0400 (10) 0.0229 (7) 0.0334 (7) 0.0015 (7) 0.0038 (7) 0.0012 (6)
C6 0.0197 (7) 0.0229 (6) 0.0203 (5) −0.0006 (6) −0.0005 (5) −0.0009 (5)
C7 0.0177 (6) 0.0186 (6) 0.0222 (6) −0.0001 (5) 0.0011 (5) −0.0005 (4)
C8 0.0203 (7) 0.0250 (6) 0.0189 (5) −0.0008 (6) 0.0003 (5) 0.0040 (5)
C9 0.0197 (6) 0.0244 (6) 0.0214 (6) −0.0024 (5) −0.0004 (5) 0.0024 (5)
C10 0.0221 (7) 0.0228 (6) 0.0233 (6) −0.0024 (6) −0.0008 (5) −0.0009 (5)
C11 0.0298 (8) 0.0280 (7) 0.0239 (6) −0.0033 (6) 0.0026 (6) −0.0008 (5)
C12 0.0306 (8) 0.0310 (8) 0.0306 (7) −0.0015 (7) 0.0065 (6) −0.0053 (6)
C13 0.0287 (8) 0.0268 (7) 0.0367 (7) 0.0032 (7) 0.0011 (6) −0.0055 (6)
C14 0.0292 (8) 0.0239 (7) 0.0287 (7) 0.0014 (6) −0.0022 (6) −0.0001 (5)
C15 0.0217 (7) 0.0215 (6) 0.0234 (6) −0.0035 (6) −0.0012 (5) −0.0013 (5)
C16 0.0206 (7) 0.0215 (6) 0.0234 (6) −0.0034 (5) −0.0004 (5) −0.0001 (5)
C17 0.0295 (8) 0.0228 (6) 0.0230 (6) −0.0015 (6) −0.0005 (6) 0.0018 (5)
C18 0.0322 (9) 0.0267 (7) 0.0224 (6) −0.0064 (6) 0.0031 (6) 0.0012 (5)
C19 0.0245 (8) 0.0290 (7) 0.0274 (6) −0.0037 (6) 0.0040 (6) −0.0027 (5)
C20 0.0209 (7) 0.0257 (7) 0.0277 (6) −0.0028 (6) 0.0008 (6) 0.0007 (5)
C21 0.0192 (7) 0.0233 (6) 0.0230 (6) −0.0039 (6) −0.0005 (5) 0.0012 (5)

Geometric parameters (Å, °)

O1—C6 1.3270 (18) C8—H8B 0.942 (17)
O1—H1H 0.88 (2) C9—C10 1.518 (2)
O2—C6 1.2102 (18) C9—C21 1.5196 (18)
O3—C7 1.2122 (17) C9—H9 1.01 (2)
O4—C7 1.3471 (17) C10—C11 1.385 (2)
O4—C8 1.4541 (16) C10—C15 1.4092 (19)
N1—C7 1.3675 (17) C11—C12 1.397 (2)
N1—C1 1.4484 (18) C11—H11 1.005 (19)
N1—H1N 0.88 (2) C12—C13 1.398 (2)
C1—C6 1.5284 (19) C12—H12 0.98 (2)
C1—C2 1.5462 (19) C13—C14 1.390 (2)
C1—H1 1.015 (19) C13—H13 0.99 (2)
C2—C5 1.525 (2) C14—C15 1.392 (2)
C2—C3 1.531 (2) C14—H14 1.00 (2)
C2—H2 0.975 (19) C15—C16 1.466 (2)
C3—C4 1.526 (2) C16—C17 1.3957 (19)
C3—H3A 1.01 (2) C16—C21 1.400 (2)
C3—H3B 1.01 (2) C17—C18 1.393 (2)
C4—H4A 1.03 (3) C17—H17 0.96 (2)
C4—H4B 1.00 (2) C18—C19 1.390 (2)
C4—H4C 0.98 (3) C18—H18 0.983 (18)
C5—H5A 1.02 (2) C19—C20 1.399 (2)
C5—H5B 1.00 (2) C19—H19 0.96 (2)
C5—H5C 1.00 (2) C20—C21 1.387 (2)
C8—C9 1.529 (2) C20—H20 0.98 (2)
C8—H8A 0.993 (19)
C6—O1—H1H 108.7 (15) C9—C8—H8B 111.2 (10)
C7—O4—C8 116.86 (11) H8A—C8—H8B 108.6 (14)
C7—N1—C1 118.91 (12) C10—C9—C21 102.23 (11)
C7—N1—H1N 115.3 (12) C10—C9—C8 113.04 (12)
C1—N1—H1N 116.5 (12) C21—C9—C8 108.49 (11)
N1—C1—C6 109.97 (11) C10—C9—H9 113.8 (11)
N1—C1—C2 112.46 (11) C21—C9—H9 111.1 (11)
C6—C1—C2 110.73 (11) C8—C9—H9 108.0 (11)
N1—C1—H1 105.0 (11) C11—C10—C15 120.39 (14)
C6—C1—H1 106.5 (10) C11—C10—C9 129.63 (13)
C2—C1—H1 111.9 (11) C15—C10—C9 109.96 (12)
C5—C2—C3 112.62 (14) C10—C11—C12 118.80 (14)
C5—C2—C1 110.13 (12) C10—C11—H11 119.3 (11)
C3—C2—C1 111.90 (12) C12—C11—H11 121.9 (11)
C5—C2—H2 109.7 (11) C11—C12—C13 120.76 (15)
C3—C2—H2 104.8 (10) C11—C12—H12 118.6 (12)
C1—C2—H2 107.5 (11) C13—C12—H12 120.6 (12)
C4—C3—C2 113.36 (15) C14—C13—C12 120.59 (15)
C4—C3—H3A 111.4 (12) C14—C13—H13 119.7 (12)
C2—C3—H3A 106.6 (13) C12—C13—H13 119.7 (12)
C4—C3—H3B 109.2 (12) C13—C14—C15 118.76 (14)
C2—C3—H3B 108.9 (12) C13—C14—H14 121.6 (12)
H3A—C3—H3B 107.1 (19) C15—C14—H14 119.6 (12)
C3—C4—H4A 110.2 (15) C14—C15—C10 120.68 (13)
C3—C4—H4B 112.8 (13) C14—C15—C16 130.69 (13)
H4A—C4—H4B 109 (2) C10—C15—C16 108.64 (13)
C3—C4—H4C 110.1 (16) C17—C16—C21 120.60 (13)
H4A—C4—H4C 111 (2) C17—C16—C15 130.71 (14)
H4B—C4—H4C 104 (2) C21—C16—C15 108.66 (12)
C2—C5—H5A 109.8 (12) C18—C17—C16 118.24 (14)
C2—C5—H5B 109.5 (11) C18—C17—H17 120.8 (12)
H5A—C5—H5B 106.7 (17) C16—C17—H17 121.0 (12)
C2—C5—H5C 111.2 (13) C19—C18—C17 121.20 (14)
H5A—C5—H5C 109.4 (17) C19—C18—H18 121.0 (11)
H5B—C5—H5C 110.2 (17) C17—C18—H18 117.7 (11)
O2—C6—O1 124.13 (13) C18—C19—C20 120.52 (15)
O2—C6—C1 123.22 (13) C18—C19—H19 121.3 (11)
O1—C6—C1 112.64 (12) C20—C19—H19 118.1 (11)
O3—C7—O4 125.25 (12) C21—C20—C19 118.54 (14)
O3—C7—N1 124.76 (13) C21—C20—H20 123.1 (11)
O4—C7—N1 109.97 (12) C19—C20—H20 118.4 (11)
O4—C8—C9 109.32 (11) C20—C21—C16 120.86 (12)
O4—C8—H8A 107.3 (10) C20—C21—C9 128.82 (13)
C9—C8—H8A 111.3 (10) C16—C21—C9 110.31 (12)
O4—C8—H8B 109.0 (10)
C7—N1—C1—C6 −88.14 (15) C12—C13—C14—C15 0.7 (2)
C7—N1—C1—C2 147.96 (12) C13—C14—C15—C10 0.6 (2)
N1—C1—C2—C5 −62.96 (16) C13—C14—C15—C16 −179.33 (15)
C6—C1—C2—C5 173.56 (13) C11—C10—C15—C14 −1.4 (2)
N1—C1—C2—C3 63.11 (16) C9—C10—C15—C14 177.23 (13)
C6—C1—C2—C3 −60.37 (16) C11—C10—C15—C16 178.54 (13)
C5—C2—C3—C4 −65.0 (2) C9—C10—C15—C16 −2.87 (16)
C1—C2—C3—C4 170.27 (15) C14—C15—C16—C17 1.9 (3)
N1—C1—C6—O2 −6.34 (19) C10—C15—C16—C17 −178.03 (15)
C2—C1—C6—O2 118.56 (15) C14—C15—C16—C21 179.97 (15)
N1—C1—C6—O1 174.17 (11) C10—C15—C16—C21 0.08 (16)
C2—C1—C6—O1 −60.94 (15) C21—C16—C17—C18 −1.9 (2)
C8—O4—C7—O3 0.8 (2) C15—C16—C17—C18 176.00 (14)
C8—O4—C7—N1 179.33 (11) C16—C17—C18—C19 1.5 (2)
C1—N1—C7—O3 −17.2 (2) C17—C18—C19—C20 0.3 (2)
C1—N1—C7—O4 164.18 (11) C18—C19—C20—C21 −1.8 (2)
C7—O4—C8—C9 121.17 (13) C19—C20—C21—C16 1.4 (2)
O4—C8—C9—C10 −73.17 (14) C19—C20—C21—C9 −179.33 (14)
O4—C8—C9—C21 174.19 (12) C17—C16—C21—C20 0.5 (2)
C21—C9—C10—C11 −177.33 (15) C15—C16—C21—C20 −177.88 (13)
C8—C9—C10—C11 66.3 (2) C17—C16—C21—C9 −178.93 (13)
C21—C9—C10—C15 4.25 (15) C15—C16—C21—C9 2.74 (16)
C8—C9—C10—C15 −112.17 (13) C10—C9—C21—C20 176.47 (14)
C15—C10—C11—C12 0.9 (2) C8—C9—C21—C20 −63.88 (19)
C9—C10—C11—C12 −177.41 (15) C10—C9—C21—C16 −4.22 (15)
C10—C11—C12—C13 0.4 (2) C8—C9—C21—C16 115.44 (13)
C11—C12—C13—C14 −1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1H···O2i 0.88 (2) 1.77 (2) 2.6511 (14) 176 (2)
N1—H1N···O1ii 0.88 (2) 2.18 (2) 3.0433 (16) 167.6 (17)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2313).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  4. Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem.62, 2661–2666.
  7. Yamada, K., Hashizume, D. & Shimizu, T. (2008). Acta Cryst. E64, o1112. [DOI] [PMC free article] [PubMed]
  8. Yamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021855/is2313sup1.cif

e-64-o1533-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021855/is2313Isup2.hkl

e-64-o1533-Isup2.hkl (164.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES