Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 23;64(Pt 8):o1581. doi: 10.1107/S1600536808022733

2-Methyl­phenyl 4-methyl­benzoate

B Thimme Gowda a,*, Sabine Foro b, K S Babitha a, Hartmut Fuess b
PMCID: PMC2962198  PMID: 21203279

Abstract

The conformation of the C=O bond in the title compound 2MP4MBA, C15H14O2, is anti to the ortho-methyl group in the phen­oxy ring. The bond parameters in 2MP4MBA are similar to those in 3-methyl­phenyl 4-methyl­benzoate (3MP4MBA), 4-methyl­phenyl 4-methyl­benzoate (4MP4MBA) and other aryl benzoates. The dihedral angle between the two aromatic rings in 2MP4MBA is 73.04 (8)°.

Related literature

For related literature, see Gowda et al. (2007, 2008); Nayak & Gowda (2008).graphic file with name e-64-o1581-scheme1.jpg

Experimental

Crystal data

  • C15H14O2

  • M r = 226.26

  • Monoclinic, Inline graphic

  • a = 11.690 (2) Å

  • b = 9.670 (1) Å

  • c = 11.478 (2) Å

  • β = 104.50 (2)°

  • V = 1256.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 299 (2) K

  • 0.50 × 0.46 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.968, T max = 0.989

  • 7861 measured reflections

  • 2529 independent reflections

  • 1385 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.200

  • S = 1.04

  • 2529 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022733/bx2161sup1.cif

e-64-o1581-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022733/bx2161Isup2.hkl

e-64-o1581-Isup2.hkl (124.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the crystal structures of aryl benzoates (Gowda et al., 2007; 2008), the structure of 2-methylphenyl 4-methylbenzoate (2MP4MBA) has been determined. The conformation of the C=O bond in 2MP4MBA is anti to the ortho-methyl group in the phenolic benzene ring (Fig. 1). The bond parameters in 2MP4MBA are similar to those in 3-methylphenyl 4-methylbenzoate (3MP4MBA), 4-methylphenyl 4-methylbenzoate (4MP4MBA) (Gowda et al., 2007) and other aryl benzoates (Gowda et al., 2008). The dihedral angle between the benzene and benzoyl rings in 2MP4MBA is 73.04 (8)°, compared to the values of 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. The packing diagram of molecules in the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound used for X-ray diffraction studies were obtained by slow evaporation of an ethanolic solution at room temperature.

Refinement

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and its positional parameters were refined freely [C—H = 0.87 (3)–1.05 (3) Å. All H atoms were refined with isotropic displacement parameters (Uiso(H) = 1.2 Ueq(CH) and 1.5Ueq(CH3))

To improve the values of R1, wR2, and GOOF, the bad three reflections (1 1 0 2 0 0 1 1 1) were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound.

Crystal data

C15H14O2 F000 = 480
Mr = 226.26 Dx = 1.196 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1609 reflections
a = 11.690 (2) Å θ = 2.8–27.9º
b = 9.670 (1) Å µ = 0.08 mm1
c = 11.478 (2) Å T = 299 (2) K
β = 104.50 (2)º Prism, colourless
V = 1256.2 (3) Å3 0.50 × 0.46 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2529 independent reflections
Radiation source: fine-focus sealed tube 1385 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 299(2) K θmax = 26.4º
Rotation method data acquisition using ω and φ scans θmin = 2.8º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −11→14
Tmin = 0.968, Tmax = 0.989 k = −12→9
7861 measured reflections l = −13→14

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053   w = 1/[σ2(Fo2) + (0.092P)2 + 0.342P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.200 (Δ/σ)max = 0.006
S = 1.04 Δρmax = 0.21 e Å3
2529 reflections Δρmin = −0.15 e Å3
181 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.031 (6)
Secondary atom site location: difference Fourier map

Special details

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5348 (2) 0.2164 (2) 0.4626 (2) 0.0639 (6)
C2 0.5493 (2) 0.1082 (2) 0.3892 (2) 0.0665 (6)
C3 0.4583 (3) 0.0849 (3) 0.2881 (2) 0.0818 (8)
H3 0.465 (2) 0.002 (3) 0.238 (3) 0.098*
C4 0.3581 (3) 0.1645 (4) 0.2630 (3) 0.0920 (9)
H4 0.293 (3) 0.134 (3) 0.192 (3) 0.110*
C5 0.3464 (3) 0.2706 (4) 0.3381 (3) 0.0929 (10)
H5 0.282 (3) 0.329 (3) 0.318 (3) 0.111*
C6 0.4355 (3) 0.2979 (3) 0.4402 (3) 0.0787 (8)
H6 0.436 (3) 0.363 (3) 0.493 (3) 0.094*
C7 0.7074 (2) 0.3305 (2) 0.5779 (2) 0.0642 (6)
C8 0.8038 (2) 0.3150 (2) 0.6887 (2) 0.0623 (6)
C9 0.8060 (2) 0.2066 (3) 0.7680 (2) 0.0713 (7)
H9 0.741 (2) 0.137 (3) 0.754 (2) 0.086*
C10 0.8988 (2) 0.1943 (3) 0.8698 (2) 0.0774 (7)
H10 0.901 (2) 0.116 (3) 0.926 (2) 0.093*
C11 0.9911 (2) 0.2878 (3) 0.8946 (2) 0.0786 (7)
C12 0.9879 (3) 0.3953 (3) 0.8146 (3) 0.0899 (9)
H12 1.052 (3) 0.462 (3) 0.823 (3) 0.108*
C13 0.8960 (2) 0.4098 (3) 0.7127 (3) 0.0802 (7)
H13 0.896 (2) 0.489 (3) 0.650 (2) 0.096*
C14 0.6588 (2) 0.0208 (3) 0.4190 (3) 0.0866 (8)
H14A 0.6673 −0.0210 0.4965 0.129*
H14B 0.7264 0.0777 0.4203 0.129*
H14C 0.6527 −0.0500 0.3592 0.129*
C15 1.0906 (3) 0.2722 (4) 1.0064 (3) 0.1079 (11)
H15A 1.1586 0.2344 0.9851 0.162*
H15B 1.0665 0.2111 1.0618 0.162*
H15C 1.1101 0.3610 1.0434 0.162*
O1 0.62322 (15) 0.23295 (16) 0.57090 (14) 0.0759 (5)
O2 0.70209 (16) 0.41780 (18) 0.50210 (17) 0.0858 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0637 (14) 0.0663 (13) 0.0593 (13) −0.0023 (11) 0.0110 (11) 0.0084 (10)
C2 0.0723 (15) 0.0639 (13) 0.0640 (14) 0.0001 (11) 0.0183 (12) 0.0075 (11)
C3 0.097 (2) 0.0791 (17) 0.0654 (16) −0.0007 (15) 0.0136 (14) 0.0045 (13)
C4 0.089 (2) 0.102 (2) 0.0721 (17) −0.0112 (18) −0.0030 (15) 0.0184 (17)
C5 0.0727 (19) 0.101 (2) 0.100 (2) 0.0197 (16) 0.0132 (17) 0.0367 (19)
C6 0.0850 (19) 0.0726 (15) 0.0808 (18) 0.0127 (14) 0.0252 (15) 0.0111 (13)
C7 0.0685 (15) 0.0544 (12) 0.0733 (15) 0.0050 (11) 0.0248 (12) −0.0033 (11)
C8 0.0629 (13) 0.0598 (12) 0.0673 (14) −0.0005 (10) 0.0220 (11) −0.0064 (10)
C9 0.0678 (15) 0.0668 (14) 0.0770 (16) −0.0082 (12) 0.0141 (13) −0.0005 (12)
C10 0.0683 (16) 0.0829 (17) 0.0773 (17) −0.0054 (13) 0.0115 (13) 0.0052 (13)
C11 0.0633 (15) 0.0930 (18) 0.0776 (17) −0.0054 (13) 0.0140 (12) −0.0117 (14)
C12 0.0740 (18) 0.0924 (19) 0.101 (2) −0.0253 (15) 0.0165 (16) −0.0105 (17)
C13 0.0813 (18) 0.0707 (15) 0.0899 (19) −0.0129 (13) 0.0242 (15) 0.0009 (13)
C14 0.0866 (19) 0.0814 (17) 0.0954 (19) 0.0142 (14) 0.0294 (15) 0.0050 (14)
C15 0.0766 (19) 0.138 (3) 0.098 (2) −0.0173 (18) 0.0013 (16) −0.0083 (19)
O1 0.0790 (11) 0.0763 (11) 0.0667 (11) −0.0141 (9) 0.0075 (8) 0.0060 (8)
O2 0.0901 (13) 0.0725 (11) 0.0936 (14) 0.0013 (9) 0.0205 (10) 0.0188 (9)

Geometric parameters (Å, °)

C1—C6 1.373 (3) C8—C13 1.390 (3)
C1—C2 1.381 (3) C9—C10 1.386 (4)
C1—O1 1.413 (3) C9—H9 1.00 (3)
C2—C3 1.383 (4) C10—C11 1.382 (4)
C2—C14 1.499 (3) C10—H10 0.99 (3)
C3—C4 1.371 (4) C11—C12 1.382 (4)
C3—H3 1.00 (3) C11—C15 1.508 (4)
C4—C5 1.369 (4) C12—C13 1.383 (4)
C4—H4 1.01 (3) C12—H12 0.97 (3)
C5—C6 1.384 (4) C13—H13 1.05 (3)
C5—H5 0.92 (3) C14—H14A 0.9600
C6—H6 0.87 (3) C14—H14B 0.9600
C7—O2 1.202 (3) C14—H14C 0.9600
C7—O1 1.351 (3) C15—H15A 0.9600
C7—C8 1.481 (3) C15—H15B 0.9600
C8—C9 1.385 (3) C15—H15C 0.9600
C6—C1—C2 123.3 (2) C10—C9—H9 118.6 (15)
C6—C1—O1 119.9 (2) C11—C10—C9 121.6 (3)
C2—C1—O1 116.6 (2) C11—C10—H10 118.4 (16)
C1—C2—C3 116.7 (2) C9—C10—H10 120.0 (16)
C1—C2—C14 121.1 (2) C12—C11—C10 117.7 (3)
C3—C2—C14 122.2 (2) C12—C11—C15 121.9 (3)
C4—C3—C2 121.5 (3) C10—C11—C15 120.4 (3)
C4—C3—H3 121.1 (16) C11—C12—C13 121.7 (3)
C2—C3—H3 117.2 (16) C11—C12—H12 122.7 (18)
C5—C4—C3 120.2 (3) C13—C12—H12 115.5 (18)
C5—C4—H4 123.4 (18) C12—C13—C8 120.0 (3)
C3—C4—H4 116.1 (18) C12—C13—H13 121.3 (15)
C4—C5—C6 120.2 (3) C8—C13—H13 118.6 (15)
C4—C5—H5 120.5 (19) C2—C14—H14A 109.5
C6—C5—H5 119 (2) C2—C14—H14B 109.5
C1—C6—C5 118.1 (3) H14A—C14—H14B 109.5
C1—C6—H6 115.4 (19) C2—C14—H14C 109.5
C5—C6—H6 126.5 (19) H14A—C14—H14C 109.5
O2—C7—O1 122.9 (2) H14B—C14—H14C 109.5
O2—C7—C8 125.6 (2) C11—C15—H15A 109.5
O1—C7—C8 111.49 (19) C11—C15—H15B 109.5
C9—C8—C13 118.9 (2) H15A—C15—H15B 109.5
C9—C8—C7 121.8 (2) C11—C15—H15C 109.5
C13—C8—C7 119.3 (2) H15A—C15—H15C 109.5
C8—C9—C10 120.1 (2) H15B—C15—H15C 109.5
C8—C9—H9 121.4 (15) C7—O1—C1 119.55 (17)
C6—C1—C2—C3 0.9 (4) C13—C8—C9—C10 0.4 (4)
O1—C1—C2—C3 174.9 (2) C7—C8—C9—C10 178.9 (2)
C6—C1—C2—C14 −179.0 (2) C8—C9—C10—C11 −0.4 (4)
O1—C1—C2—C14 −4.9 (3) C9—C10—C11—C12 0.3 (4)
C1—C2—C3—C4 −0.7 (4) C9—C10—C11—C15 179.7 (3)
C14—C2—C3—C4 179.1 (2) C10—C11—C12—C13 −0.1 (4)
C2—C3—C4—C5 0.4 (4) C15—C11—C12—C13 −179.5 (3)
C3—C4—C5—C6 −0.3 (5) C11—C12—C13—C8 0.1 (4)
C2—C1—C6—C5 −0.7 (4) C9—C8—C13—C12 −0.2 (4)
O1—C1—C6—C5 −174.6 (2) C7—C8—C13—C12 −178.8 (2)
C4—C5—C6—C1 0.4 (4) O2—C7—O1—C1 10.7 (3)
O2—C7—C8—C9 −176.4 (2) C8—C7—O1—C1 −169.31 (18)
O1—C7—C8—C9 3.7 (3) C6—C1—O1—C7 −85.0 (3)
O2—C7—C8—C13 2.2 (4) C2—C1—O1—C7 100.8 (2)
O1—C7—C8—C13 −177.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2161).

References

  1. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.
  2. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1390. [DOI] [PMC free article] [PubMed]
  3. Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63 In the press.
  4. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022733/bx2161sup1.cif

e-64-o1581-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022733/bx2161Isup2.hkl

e-64-o1581-Isup2.hkl (124.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES