Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):o1598. doi: 10.1107/S1600536808022988

2-(5,7-Dimethyl-3-methyl­sulfanyl-1-benzofuran-2-yl)acetic acid

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2962211  PMID: 21203292

Abstract

The title compound, C13H14O3S, was prepared by alkaline hydrolysis of ethyl 2-(5,7-dimethyl-3-methyl­sulfanyl-1-benzofuran-2-yl)acetate. In the crystal structure, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further packed into stacks along the a axis by weak C—H⋯π inter­actions.

Related literature

For the crystal structures of similar 2-(3-methyl­sulfanyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2007); Seo et al. (2007).graphic file with name e-64-o1598-scheme1.jpg

Experimental

Crystal data

  • C13H14O3S

  • M r = 250.30

  • Triclinic, Inline graphic

  • a = 4.7225 (9) Å

  • b = 7.476 (2) Å

  • c = 17.687 (3) Å

  • α = 80.91 (3)°

  • β = 89.86 (3)°

  • γ = 80.67 (3)°

  • V = 608.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 4707 measured reflections

  • 2344 independent reflections

  • 2156 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.144

  • S = 1.24

  • 2344 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022988/cv2433sup1.cif

e-64-o1598-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022988/cv2433Isup2.hkl

e-64-o1598-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.73 (4) 1.95 (4) 2.680 (3) 177 (4)
C9—H9ACgii 0.96 2.72 3.621 (4) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing studies on the synthesis and structures of 2-(3-methylsulfanyl-1-benzofuran-2-yl)acetic acid derivatives, we have described 2-(5-ethyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid (Seo et al., 2007) and 2-(3-methylsulfanyl-5-phenyl-1-benzofuran-2-yl)acetic acid (Choi et al., 2007). Here we report the crystal structure of the title compound, (I) (Fig. 1).

In (I), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the nine constituent atoms. The crystal packing (Fig. 2) is stabilized by classical inversion-related O—H···O hydrogen bonds (Table 1) and C—H···π interactions between a methyl H atom and the ring C2–C7 (Cg is its centroid) of a neighbouring molecule (Table 1).

Experimental

Ethyl 2-(5,7-dimethyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (417 mg, 1.50 mmol) was added to a solution of potassium hydroxide (505 mg, 9.0 mmol) in water (25 ml) and methanol (25 ml), and the mixture was refluxed for 5 h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 82%, m.p. 420–421 K; Rf = 0.66 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.32 (s, 3H), 2.43 (s, 3H), 2.45 (s, 3H), 4.03 (s, 2H), 6.93 (s, 1H), 7.25 (s, 1H), 10.10 (s, 1H); EI—MS 250 [M+].

Refinement

Atom H3O of the hydroxy group was found in a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing C—H···π interaction and hydrogen bonds (dotted lines). Cg denotes the C2–C7 ring centroid [symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z].

Crystal data

C13H14O3S Z = 2
Mr = 250.30 F000 = 264
Triclinic, P1 Dx = 1.367 Mg m3
Hall symbol: -P_1 Melting point = 420–421 K
a = 4.7225 (9) Å Mo Kα radiation λ = 0.71073 Å
b = 7.476 (2) Å Cell parameters from 3835 reflections
c = 17.687 (3) Å θ = 2.3–28.3º
α = 80.91 (3)º µ = 0.26 mm1
β = 89.86 (3)º T = 293 (2) K
γ = 80.67 (3)º Block, colourless
V = 608.3 (2) Å3 0.40 × 0.40 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 2344 independent reflections
Radiation source: fine-focus sealed tube 2156 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.059
Detector resolution: 10.0 pixels mm-1 θmax = 26.0º
T = 293(2) K θmin = 1.2º
φ and ω scans h = −5→5
Absorption correction: none k = −9→9
4707 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144   w = 1/[σ2(Fo2) + (0.063P)2 + 0.3562P] where P = (Fo2 + 2Fc2)/3
S = 1.24 (Δ/σ)max < 0.001
2344 reflections Δρmax = 0.38 e Å3
161 parameters Δρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.85977 (13) 0.34264 (8) 0.36615 (3) 0.0254 (2)
O1 0.4166 (3) 0.8236 (2) 0.27417 (9) 0.0223 (4)
O2 0.2357 (4) 0.9616 (2) 0.44893 (10) 0.0272 (4)
O3 0.6544 (4) 0.7728 (2) 0.47532 (11) 0.0282 (4)
H3O 0.685 (8) 0.848 (5) 0.494 (2) 0.049 (11)*
C1 0.6982 (5) 0.5473 (3) 0.30908 (14) 0.0214 (5)
C2 0.7803 (5) 0.6242 (3) 0.23378 (14) 0.0232 (5)
C3 0.9867 (5) 0.5690 (3) 0.18203 (15) 0.0268 (5)
H3 1.1098 0.4574 0.1936 0.032*
C4 1.0055 (6) 0.6834 (4) 0.11284 (15) 0.0293 (6)
C5 0.8179 (6) 0.8526 (3) 0.09713 (15) 0.0306 (6)
H5 0.8332 0.9275 0.0505 0.037*
C6 0.6115 (6) 0.9133 (3) 0.14758 (15) 0.0279 (5)
C7 0.6010 (5) 0.7931 (3) 0.21521 (14) 0.0231 (5)
C8 0.4821 (5) 0.6706 (3) 0.32972 (13) 0.0211 (5)
C9 1.2248 (6) 0.6283 (4) 0.05502 (17) 0.0400 (7)
H9A 1.4113 0.6436 0.0718 0.060*
H9B 1.1762 0.7043 0.0063 0.060*
H9C 1.2265 0.5021 0.0502 0.060*
C10 0.4134 (6) 1.0944 (3) 0.13076 (17) 0.0359 (6)
H10A 0.2325 1.0833 0.1544 0.054*
H10B 0.3842 1.1291 0.0764 0.054*
H10C 0.4972 1.1864 0.1508 0.054*
C11 0.3130 (5) 0.6760 (3) 0.40038 (13) 0.0225 (5)
H11A 0.3482 0.5562 0.4324 0.027*
H11B 0.1099 0.7050 0.3869 0.027*
C12 0.3944 (5) 0.8187 (3) 0.44444 (13) 0.0195 (5)
C13 0.7336 (6) 0.1752 (3) 0.31692 (18) 0.0360 (6)
H13A 0.5277 0.1920 0.3176 0.054*
H13B 0.8110 0.0538 0.3421 0.054*
H13C 0.7950 0.1908 0.2649 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0300 (3) 0.0185 (3) 0.0271 (3) −0.0028 (2) −0.0065 (2) −0.0025 (2)
O1 0.0275 (8) 0.0163 (7) 0.0230 (9) −0.0025 (6) 0.0001 (6) −0.0039 (6)
O2 0.0275 (9) 0.0214 (8) 0.0334 (10) −0.0003 (7) −0.0053 (7) −0.0105 (7)
O3 0.0251 (9) 0.0248 (9) 0.0370 (10) −0.0017 (7) −0.0069 (7) −0.0140 (8)
C1 0.0254 (11) 0.0162 (10) 0.0241 (12) −0.0044 (8) −0.0027 (9) −0.0063 (9)
C2 0.0256 (12) 0.0200 (11) 0.0263 (12) −0.0079 (9) −0.0025 (9) −0.0066 (9)
C3 0.0267 (12) 0.0261 (12) 0.0297 (13) −0.0068 (9) 0.0006 (10) −0.0084 (10)
C4 0.0334 (13) 0.0314 (13) 0.0289 (13) −0.0150 (10) 0.0057 (10) −0.0125 (10)
C5 0.0418 (15) 0.0292 (13) 0.0235 (13) −0.0155 (11) 0.0006 (10) −0.0024 (10)
C6 0.0366 (13) 0.0209 (11) 0.0281 (13) −0.0092 (10) −0.0021 (10) −0.0051 (10)
C7 0.0280 (12) 0.0209 (11) 0.0227 (12) −0.0074 (9) −0.0006 (9) −0.0066 (9)
C8 0.0256 (11) 0.0170 (10) 0.0223 (11) −0.0066 (8) −0.0045 (9) −0.0045 (9)
C9 0.0449 (16) 0.0437 (16) 0.0368 (15) −0.0173 (13) 0.0140 (13) −0.0125 (13)
C10 0.0480 (16) 0.0247 (13) 0.0318 (14) −0.0035 (11) −0.0049 (12) 0.0031 (11)
C11 0.0252 (11) 0.0191 (10) 0.0253 (12) −0.0074 (9) 0.0000 (9) −0.0059 (9)
C12 0.0218 (11) 0.0188 (10) 0.0193 (11) −0.0071 (8) 0.0025 (8) −0.0035 (8)
C13 0.0439 (15) 0.0200 (11) 0.0452 (16) −0.0068 (11) −0.0132 (12) −0.0066 (11)

Geometric parameters (Å, °)

S—C1 1.755 (2) C5—H5 0.9300
S—C13 1.808 (3) C6—C7 1.384 (4)
O1—C8 1.379 (3) C6—C10 1.503 (4)
O1—C7 1.380 (3) C8—C11 1.484 (3)
O2—C12 1.215 (3) C9—H9A 0.9600
O3—C12 1.316 (3) C9—H9B 0.9600
O3—H3O 0.73 (4) C9—H9C 0.9600
C1—C8 1.351 (3) C10—H10A 0.9600
C1—C2 1.443 (3) C10—H10B 0.9600
C2—C7 1.393 (3) C10—H10C 0.9600
C2—C3 1.394 (3) C11—C12 1.514 (3)
C3—C4 1.389 (4) C11—H11A 0.9700
C3—H3 0.9300 C11—H11B 0.9700
C4—C5 1.410 (4) C13—H13A 0.9600
C4—C9 1.509 (4) C13—H13B 0.9600
C5—C6 1.390 (4) C13—H13C 0.9600
C1—S—C13 100.58 (12) C4—C9—H9A 109.5
C8—O1—C7 105.62 (18) C4—C9—H9B 109.5
C12—O3—H3O 109 (3) H9A—C9—H9B 109.5
C8—C1—C2 106.3 (2) C4—C9—H9C 109.5
C8—C1—S 126.10 (19) H9A—C9—H9C 109.5
C2—C1—S 127.50 (18) H9B—C9—H9C 109.5
C7—C2—C3 119.3 (2) C6—C10—H10A 109.5
C7—C2—C1 105.7 (2) C6—C10—H10B 109.5
C3—C2—C1 135.1 (2) H10A—C10—H10B 109.5
C4—C3—C2 118.9 (2) C6—C10—H10C 109.5
C4—C3—H3 120.6 H10A—C10—H10C 109.5
C2—C3—H3 120.6 H10B—C10—H10C 109.5
C3—C4—C5 119.3 (2) C8—C11—C12 110.56 (18)
C3—C4—C9 120.6 (3) C8—C11—H11A 109.5
C5—C4—C9 120.1 (2) C12—C11—H11A 109.5
C6—C5—C4 123.5 (2) C8—C11—H11B 109.5
C6—C5—H5 118.3 C12—C11—H11B 109.5
C4—C5—H5 118.3 H11A—C11—H11B 108.1
C7—C6—C5 114.6 (2) O2—C12—O3 124.3 (2)
C7—C6—C10 122.1 (2) O2—C12—C11 122.7 (2)
C5—C6—C10 123.3 (2) O3—C12—C11 112.94 (19)
O1—C7—C6 125.3 (2) S—C13—H13A 109.5
O1—C7—C2 110.3 (2) S—C13—H13B 109.5
C6—C7—C2 124.4 (2) H13A—C13—H13B 109.5
C1—C8—O1 112.1 (2) S—C13—H13C 109.5
C1—C8—C11 132.8 (2) H13A—C13—H13C 109.5
O1—C8—C11 115.00 (19) H13B—C13—H13C 109.5
C13—S—C1—C8 110.5 (2) C10—C6—C7—O1 −0.8 (4)
C13—S—C1—C2 −74.3 (2) C5—C6—C7—C2 0.5 (3)
C8—C1—C2—C7 0.2 (2) C10—C6—C7—C2 −179.7 (2)
S—C1—C2—C7 −175.77 (17) C3—C2—C7—O1 −178.87 (19)
C8—C1—C2—C3 179.0 (2) C1—C2—C7—O1 0.2 (2)
S—C1—C2—C3 3.0 (4) C3—C2—C7—C6 0.1 (3)
C7—C2—C3—C4 −0.7 (3) C1—C2—C7—C6 179.1 (2)
C1—C2—C3—C4 −179.4 (2) C2—C1—C8—O1 −0.5 (2)
C2—C3—C4—C5 0.6 (3) S—C1—C8—O1 175.57 (15)
C2—C3—C4—C9 −179.7 (2) C2—C1—C8—C11 −177.8 (2)
C3—C4—C5—C6 0.0 (4) S—C1—C8—C11 −1.8 (4)
C9—C4—C5—C6 −179.6 (2) C7—O1—C8—C1 0.5 (2)
C4—C5—C6—C7 −0.6 (4) C7—O1—C8—C11 178.39 (17)
C4—C5—C6—C10 179.6 (2) C1—C8—C11—C12 108.4 (3)
C8—O1—C7—C6 −179.4 (2) O1—C8—C11—C12 −68.9 (2)
C8—O1—C7—C2 −0.4 (2) C8—C11—C12—O2 109.1 (2)
C5—C6—C7—O1 179.4 (2) C8—C11—C12—O3 −69.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O2i 0.73 (4) 1.95 (4) 2.680 (3) 177 (4)
C9—H9A···Cgii 0.96 2.72 3.621 (4) 156

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2433).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3468.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2048–o2049.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022988/cv2433sup1.cif

e-64-o1598-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022988/cv2433Isup2.hkl

e-64-o1598-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES