Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):o1599. doi: 10.1107/S1600536808022848

4,4′-[(1,3,4-Thia­diazole-2,5-di­yl)bis­(thio­methyl­ene)]dibenzonitrile

Wenxiang Wang a, Hong Zhao a,*
PMCID: PMC2962212  PMID: 21203293

Abstract

The title mol­ecule, C18H12N4S3, consists of three essentially planar fragments, viz. two methyl-substituted benzonitrile rings and a substituted thia­diazole ring. The dihedral angles between the substituted benzonitrile rings and the central thia­diazole ring are 28.29 (10) and 78.83 (6)°, and the dihedral angle between the two benzonitrile rings is 72.89 (7)°.

Related literature

For related literature, see: Tarafder et al., (2000); El-Shekeil et al. (1988); Jinxia et al. (2003).graphic file with name e-64-o1599-scheme1.jpg

Experimental

Crystal data

  • C18H12N4S3

  • M r = 380.50

  • Monoclinic, Inline graphic

  • a = 7.6974 (15) Å

  • b = 8.4375 (17) Å

  • c = 27.272 (6) Å

  • β = 92.53 (3)°

  • V = 1769.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 (2) K

  • 0.45 × 0.40 × 0.30 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.814, T max = 0.903

  • 15327 measured reflections

  • 4028 independent reflections

  • 2754 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.115

  • S = 1.05

  • 4028 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022848/fl2207sup1.cif

e-64-o1599-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022848/fl2207Isup2.hkl

e-64-o1599-Isup2.hkl (197.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to HZ.

supplementary crystallographic information

Comment

1,3,4-thiadiazole-2,5-dithiol and its derivatives are interesting compounds that have attracted the attention of researchers because of their wide range of applications in many fields, such as the determination of trace elements, the synthesis of novel heterocyclic compounds with antimicrobial activity(El-Shekeil et al. 1988), advanced materials, and battery cathodes (Jinxia et al.2003, Tarafder et al., (2000)). In this paper, we report the structure of one such derviative, the title compound (I).

In (I, Fig. 1) all bond lengths and angles are normal. There are three planar fragments in the molecule, viz. the central S1—S2—S3—C1—C2—N1—N2 plane with C1 farthest out at (0.0077 (19) Å) and the two benzonitrile systems C11—C18 and N4 with C11 farthest out at 0.0280 (19) Å) and C3—C19 and N3 with N3 farthest out at 0.0738 (21) Å. The dihedral angles between the central substituted ring and benzonitrile systems are 28.29 (10)° and 78.83 (6)° and 72.89 (7)° between the two benzonitrile moieties. There is no evidence of typical hydrogenn bonding or intermolecular π–π interactions. Only van-der-waals interactions are observed in the crystal is packing (Fig.2).

Experimental

A dry 50 ml flask was charged with 1,3,4-thiadiazole-2,5-dithiol (10 mmol), 4-(bromomethyl)benzonitrile (20 mmol), K2CO3(10 mmol), and methanol (30 mL). The mixture was stirred with refluxing for 4 h and then was poured into water (40 ml), the precipitate was washed with water for 2–3 times and purified by recrystallization from methanol to give the crystals of the target material.

Refinement

All the C—H hydrogen atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with acyclic C—H distances ranging as 0.97 Å, phenyl C—H distances ranging as 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, showing the structure along the b axis.

Crystal data

C18H12N4S3 F(000) = 784
Mr = 380.50 Dx = 1.428 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 12716 reflections
a = 7.6974 (15) Å θ = 3.3–27.3°
b = 8.4375 (17) Å µ = 0.43 mm1
c = 27.272 (6) Å T = 293 K
β = 92.53 (3)° Prism, colorless
V = 1769.5 (6) Å3 0.45 × 0.40 × 0.30 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 4028 independent reflections
Radiation source: fine-focus sealed tube 2754 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −10→10
Tmin = 0.814, Tmax = 0.903 l = −35→35
15327 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4638P] where P = (Fo2 + 2Fc2)/3
4028 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6555 (3) 0.3789 (3) 0.34124 (8) 0.0469 (5)
C2 0.9214 (3) 0.3764 (3) 0.38800 (8) 0.0476 (6)
C3 0.4395 (3) 0.2503 (3) 0.27094 (10) 0.0619 (7)
H3A 0.5357 0.2535 0.2491 0.074*
H3B 0.4455 0.1514 0.2891 0.074*
C4 0.2700 (3) 0.2614 (3) 0.24188 (9) 0.0494 (6)
C5 0.1254 (3) 0.1815 (3) 0.25715 (10) 0.0681 (8)
H5 0.1344 0.1193 0.2853 0.082*
C6 −0.0313 (3) 0.1926 (3) 0.23136 (10) 0.0675 (8)
H6 −0.1277 0.1379 0.2419 0.081*
C7 −0.0448 (3) 0.2853 (3) 0.18983 (8) 0.0463 (5)
C8 0.0971 (3) 0.3662 (3) 0.17434 (8) 0.0504 (6)
H8 0.0873 0.4293 0.1464 0.060*
C9 0.2533 (3) 0.3540 (3) 0.20014 (9) 0.0521 (6)
H9 0.3494 0.4087 0.1894 0.062*
C10 −0.2123 (3) 0.3038 (3) 0.16434 (9) 0.0576 (7)
C11 1.2030 (3) 0.2210 (3) 0.42467 (10) 0.0602 (7)
H11A 1.1265 0.1432 0.4386 0.072*
H11B 1.2195 0.1920 0.3908 0.072*
C12 1.3756 (3) 0.2188 (3) 0.45268 (8) 0.0489 (6)
C13 1.4027 (3) 0.2929 (3) 0.49739 (9) 0.0571 (6)
H13 1.3126 0.3500 0.5106 0.068*
C14 1.5604 (3) 0.2838 (3) 0.52286 (9) 0.0568 (6)
H14 1.5767 0.3346 0.5530 0.068*
C15 1.6945 (3) 0.1987 (3) 0.50351 (9) 0.0486 (6)
C16 1.6682 (3) 0.1221 (3) 0.45909 (9) 0.0563 (6)
H16 1.7575 0.0631 0.4462 0.068*
C17 1.5102 (3) 0.1328 (3) 0.43390 (9) 0.0553 (6)
H17 1.4936 0.0815 0.4039 0.066*
C18 1.8610 (3) 0.1876 (3) 0.52986 (9) 0.0558 (6)
N1 0.7442 (3) 0.2519 (3) 0.33425 (8) 0.0576 (5)
N2 0.9002 (3) 0.2507 (2) 0.36166 (8) 0.0573 (5)
N3 −0.3451 (3) 0.3216 (4) 0.14549 (9) 0.0848 (8)
N4 1.9930 (3) 0.1766 (3) 0.54989 (9) 0.0740 (7)
S1 0.75230 (9) 0.51067 (8) 0.38233 (2) 0.0594 (2)
S2 0.45247 (8) 0.41683 (8) 0.31298 (2) 0.0595 (2)
S3 1.10283 (9) 0.41341 (8) 0.42665 (3) 0.0642 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0514 (13) 0.0435 (13) 0.0451 (13) −0.0003 (11) −0.0051 (10) −0.0021 (10)
C2 0.0521 (14) 0.0403 (13) 0.0499 (13) −0.0007 (11) −0.0046 (10) 0.0007 (10)
C3 0.0557 (15) 0.0595 (16) 0.0689 (17) 0.0079 (13) −0.0167 (12) −0.0152 (13)
C4 0.0475 (13) 0.0459 (14) 0.0540 (14) 0.0037 (11) −0.0076 (11) −0.0056 (11)
C5 0.0654 (17) 0.0724 (19) 0.0653 (17) −0.0093 (15) −0.0122 (14) 0.0269 (14)
C6 0.0509 (15) 0.081 (2) 0.0694 (18) −0.0132 (14) −0.0042 (13) 0.0272 (15)
C7 0.0423 (13) 0.0497 (14) 0.0463 (13) 0.0028 (11) −0.0039 (10) −0.0007 (10)
C8 0.0535 (14) 0.0511 (14) 0.0464 (13) −0.0022 (12) −0.0002 (11) 0.0072 (11)
C9 0.0470 (14) 0.0515 (15) 0.0577 (15) −0.0082 (12) 0.0031 (11) −0.0010 (12)
C10 0.0511 (16) 0.0691 (18) 0.0523 (15) 0.0021 (14) 0.0005 (12) 0.0068 (13)
C11 0.0546 (15) 0.0506 (15) 0.0741 (17) −0.0006 (12) −0.0122 (13) −0.0093 (13)
C12 0.0502 (14) 0.0396 (13) 0.0561 (15) −0.0038 (11) −0.0052 (11) 0.0033 (11)
C13 0.0517 (14) 0.0607 (16) 0.0584 (15) 0.0103 (13) −0.0014 (12) −0.0096 (13)
C14 0.0565 (15) 0.0585 (16) 0.0547 (15) 0.0084 (13) −0.0059 (12) −0.0061 (12)
C15 0.0464 (13) 0.0427 (13) 0.0564 (15) −0.0002 (11) −0.0037 (11) 0.0103 (11)
C16 0.0526 (15) 0.0525 (15) 0.0640 (16) 0.0085 (12) 0.0038 (12) 0.0001 (13)
C17 0.0603 (16) 0.0527 (15) 0.0526 (15) 0.0027 (13) −0.0019 (12) −0.0080 (12)
C18 0.0553 (16) 0.0512 (15) 0.0607 (16) 0.0061 (13) 0.0001 (12) 0.0081 (12)
N1 0.0526 (12) 0.0538 (13) 0.0648 (13) 0.0076 (10) −0.0160 (10) −0.0139 (10)
N2 0.0525 (12) 0.0532 (13) 0.0647 (13) 0.0061 (10) −0.0147 (10) −0.0131 (10)
N3 0.0503 (14) 0.126 (2) 0.0771 (17) 0.0071 (15) −0.0094 (12) 0.0204 (16)
N4 0.0572 (14) 0.0870 (18) 0.0765 (16) 0.0146 (13) −0.0119 (12) 0.0068 (13)
S1 0.0657 (4) 0.0441 (4) 0.0664 (4) 0.0074 (3) −0.0187 (3) −0.0101 (3)
S2 0.0572 (4) 0.0556 (4) 0.0640 (4) 0.0118 (3) −0.0159 (3) −0.0095 (3)
S3 0.0646 (4) 0.0468 (4) 0.0786 (5) 0.0012 (3) −0.0278 (3) −0.0094 (3)

Geometric parameters (Å, °)

C1—N1 1.289 (3) C9—H9 0.9300
C1—S1 1.725 (2) C10—N3 1.134 (3)
C1—S2 1.742 (2) C11—C12 1.503 (3)
C2—N2 1.287 (3) C11—S3 1.799 (3)
C2—S1 1.727 (2) C11—H11A 0.9700
C2—S3 1.740 (2) C11—H11B 0.9700
C3—C4 1.499 (3) C12—C13 1.378 (3)
C3—S2 1.814 (2) C12—C17 1.382 (3)
C3—H3A 0.9700 C13—C14 1.374 (3)
C3—H3B 0.9700 C13—H13 0.9300
C4—C5 1.381 (3) C14—C15 1.381 (3)
C4—C9 1.382 (3) C14—H14 0.9300
C5—C6 1.372 (3) C15—C16 1.380 (3)
C5—H5 0.9300 C15—C18 1.445 (3)
C6—C7 1.376 (3) C16—C17 1.373 (3)
C6—H6 0.9300 C16—H16 0.9300
C7—C8 1.371 (3) C17—H17 0.9300
C7—C10 1.446 (3) C18—N4 1.136 (3)
C8—C9 1.370 (3) N1—N2 1.386 (3)
C8—H8 0.9300
N1—C1—S1 114.56 (17) C12—C11—S3 111.49 (17)
N1—C1—S2 123.94 (18) C12—C11—H11A 109.3
S1—C1—S2 121.49 (14) S3—C11—H11A 109.3
N2—C2—S1 114.47 (17) C12—C11—H11B 109.3
N2—C2—S3 124.36 (18) S3—C11—H11B 109.3
S1—C2—S3 121.18 (14) H11A—C11—H11B 108.0
C4—C3—S2 107.93 (16) C13—C12—C17 118.7 (2)
C4—C3—H3A 110.1 C13—C12—C11 122.7 (2)
S2—C3—H3A 110.1 C17—C12—C11 118.6 (2)
C4—C3—H3B 110.1 C14—C13—C12 121.2 (2)
S2—C3—H3B 110.1 C14—C13—H13 119.4
H3A—C3—H3B 108.4 C12—C13—H13 119.4
C5—C4—C9 118.5 (2) C13—C14—C15 119.6 (2)
C5—C4—C3 120.3 (2) C13—C14—H14 120.2
C9—C4—C3 121.2 (2) C15—C14—H14 120.2
C6—C5—C4 120.9 (2) C16—C15—C14 119.7 (2)
C6—C5—H5 119.6 C16—C15—C18 119.9 (2)
C4—C5—H5 119.6 C14—C15—C18 120.4 (2)
C5—C6—C7 119.6 (2) C17—C16—C15 120.0 (2)
C5—C6—H6 120.2 C17—C16—H16 120.0
C7—C6—H6 120.2 C15—C16—H16 120.0
C8—C7—C6 120.3 (2) C16—C17—C12 120.7 (2)
C8—C7—C10 120.2 (2) C16—C17—H17 119.6
C6—C7—C10 119.4 (2) C12—C17—H17 119.6
C9—C8—C7 119.8 (2) N4—C18—C15 178.6 (3)
C9—C8—H8 120.1 C1—N1—N2 112.22 (19)
C7—C8—H8 120.1 C2—N2—N1 112.35 (19)
C8—C9—C4 120.9 (2) C1—S1—C2 86.40 (12)
C8—C9—H9 119.5 C1—S2—C3 99.23 (11)
C4—C9—H9 119.5 C2—S3—C11 98.82 (11)
N3—C10—C7 177.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2207).

References

  1. El-Shekeil, A., Babaqi, A., Hassan, M. A. & Sheba, S. (1988). Heterocycles, 27, 2577–2580.
  2. Jinxia, L., Zhan, H. & Zhou, Y. (2003). Electrochem. Commun.5, 555–560.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tarafder, M. T. H., Azahari, K., Crouse, K. A., Yamin, B. M., Sundara Raj, S. S., Ibrahim, A. R. & Fun, H.-K. (2000). Z. Kristallogr. New Cryst. Struct.215, 487–488.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022848/fl2207sup1.cif

e-64-o1599-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022848/fl2207Isup2.hkl

e-64-o1599-Isup2.hkl (197.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES