Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):o1604. doi: 10.1107/S1600536808023258

1-Phenyl-2-(1H-1,2,4-triazol-1-yl)ethanone

Özden Özel Güven a, Hakan Tahtacı a, Simon J Coles b, Tuncer Hökelek c,*
PMCID: PMC2962216  PMID: 21203297

Abstract

In the mol­ecule of the title compound, C10H9N3O, the triazole and phenyl rings are nearly perpendicular to each other, with a dihedral angle of 88.72 (4)°. In the crystal structure, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules. There are C—H⋯π contacts between the 1,2,4-triazole rings, and between the phenyl and 1,2,4-triazole rings, and there is a weak π–π contact between the 1,2,4-triazole and phenyl rings [centroid-to-centroid distance = 4.547 (1) Å].

Related literature

For general background, see: Holla et al. (1996); Sengupta et al. (1978); Paulvannan et al. (2001); Sui et al. (1998); Bodey (1992). For related literature, see: Caira et al. (2004); Peeters et al. (1996); Özel Güven, Tahtacı et al. (2008); Özel Güven, Erdoğan et al. (2008). For synthesis, see: Liu et al. (2006).graphic file with name e-64-o1604-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O

  • M r = 187.20

  • Orthorhombic, Inline graphic

  • a = 9.3129 (2) Å

  • b = 8.11660 (10) Å

  • c = 24.0475 (4) Å

  • V = 1817.73 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • 0.35 × 0.2 × 0.2 mm

Data collection

  • Bruker Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.968, T max = 0.972

  • 16799 measured reflections

  • 2077 independent reflections

  • 1736 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.145

  • S = 1.17

  • 2077 reflections

  • 164 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023258/xu2439sup1.cif

e-64-o1604-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023258/xu2439Isup2.hkl

e-64-o1604-Isup2.hkl (58.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the rings N1–N3/C1/C2 and C5–C10, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Oi 0.970 (16) 2.449 (15) 3.2595 (17) 140.9 (12)
C3—H32⋯Oi 0.973 (16) 2.489 (16) 3.2601 (17) 136.1 (13)
C8—H8⋯N3ii 0.97 (2) 2.61 (2) 3.5405 (19) 160.2 (14)
C1—H1⋯Cg2iii 1.001 (17) 2.840 (18) 3.620 (2) 135.20 (13)
C2—H2⋯Cg1iv 0.972 (17) 3.013 (16) 3.829 (2) 142.42 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund.

supplementary crystallographic information

Comment

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention, due to antihypertensive, antifungal and antibacterial properties (Holla et al., 1996; Sengupta et al., 1978; Paulvannan et al., 2001; Sui et al., 1998). The azole antifungals possessing a triazole ring such as fluconazole (Caira et al., 2004) and itraconazole (Peeters et al., 1996) inhibit the synthesis of sterols in fungi by inhibiting cytochrome P-450-dependent 14α-lanosterol demethylase (P-45014DM) and prevent cytochrome P-450 activity (Bodey, 1992). Recently, we reported the crystal structures of 1,2,4-triazole substituted alcohol (Özel Güven, Tahtacı et al., 2008) and benzimidazole substituted ketone (Özel Güven, Erdoğan et al., 2008). We report herein the crystal structure of the 1,2,4-triazole substituted ketone, (I).

In (I), the bond lengths and angles are generally within normal ranges (Fig. 1). The 1,2,4-triazole and benzene rings, A (N1–N3/C1/C2) and B (C5–C10), are, of course, planar and nearly perpendicular to each other with a dihedral angle of A/B = 88.72 (4)°. Atoms C3 and C4 are -0.028 (2) Å and -0.054 (1) Å away from the ring planes of A and B, respectively. The N1—C3—C4 [112.73 (11)°], C3—C4—C5 [116.93 (11)°], O—C4—C3 [120.73 (12)°] and O—C4—C5 [122.34 (12)°] bond angles are highly different from the corresponding values [111.53 (10)°, 109.94 (10)°, 109.53 (11)° and 110.01 (10)°, respectively] in 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol, (II) (Özel Güven, Tahtacı et al., 2008). In ring A, the nearly equivalent N1—N2—C1 [101.81 (11)°] and C1—N3—C2 [102.23 (11)°] bond angles are narrowed, while highly different N3—C2—N1 [110.53 (13)°] and N3—C1—N2 [115.39 (12)°] bond angles are enlarged, as in (II).

In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure. The C—H···π contacts (Table 1) between the 1,2,4-triazole and the benzene rings and the 1,2,4-triazole rings and a π—π contact between the 1,2,4-triazole and benzene ring systems Cg2···Cg1i [symmetry code: (i) 1 - x, -y, -z, where Cg1 and Cg2 are centroids of the rings (N1–N3/C1/C2) and (C5–C10), respectively] further stabilize the structure, with centroid–centroid distance of 4.547 (1) Å.

Experimental

The title compound, (I), was synthesized by the reaction of 1H-1,2,4-triazole with 2-bromo-1-phenylethanone (Liu et al., 2006). To a vigorous stirred suspension of 1H-1,2,4-triazole (1105 mg, 16 mmol) and 2-bromo-1-phenylethanone (1990 mg, 10 mmol) in acetone (6 ml) was added triethylamine (2.2 ml) dropwise over a period of 1 h below 273 K, and the reaction mixture was stirred for another 30 min at room temperature. Then the mixture was filtered to remove triethylamine hydrobromide salt, the precipitate was washed with acetone, and the filtrate was evaporated under reduced pressure. The residue was dissolved in chloroform, and washed with water. After evaporation of chloroform, the yellow solid was obtained and crystallized from iso-propanol to obtain the title compound as colorless crystals (yield; 937 mg, 50%).

Refinement

H atoms were located in difference syntheses and refined isotropically [C—H = 0.954 (18)–1.007 (17) Å, Uiso(H) = 0.030 (4)–0.046 (5) Å2].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C10H9N3O F000 = 784
Mr = 187.20 Dx = 1.368 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2395 reflections
a = 9.3129 (2) Å θ = 2.9–27.5º
b = 8.11660 (10) Å µ = 0.09 mm1
c = 24.0475 (4) Å T = 120 (2) K
V = 1817.73 (5) Å3 Shard, colourless
Z = 8 0.35 × 0.2 × 0.2 mm

Data collection

Bruker Nonius KappaCCD diffractometer 2077 independent reflections
Radiation source: fine-focus sealed tube 1736 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.052
Detector resolution: 9.091 pixels mm-1 θmax = 27.5º
T = 120(2) K θmin = 3.4º
φ and ω scans h = −12→12
Absorption correction: multi-scan(SADABS; Sheldrick, 2007) k = −10→9
Tmin = 0.968, Tmax = 0.972 l = −31→31
16799 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.060   w = 1/[σ2(Fo2) + (0.0862P)2 + 0.1878P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145 (Δ/σ)max < 0.001
S = 1.17 Δρmax = 0.56 e Å3
2077 reflections Δρmin = −0.55 e Å3
164 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.141 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.27304 (10) 0.10771 (12) 0.46535 (4) 0.0301 (3)
N1 0.08642 (12) 0.25265 (13) 0.53706 (5) 0.0237 (3)
N2 0.04051 (14) 0.12395 (15) 0.56849 (5) 0.0306 (4)
N3 0.15796 (13) 0.31174 (16) 0.62134 (5) 0.0302 (3)
C1 0.08629 (16) 0.16652 (19) 0.61863 (6) 0.0302 (4)
H1 0.0645 (19) 0.097 (2) 0.6520 (7) 0.037 (4)*
C2 0.15570 (14) 0.36160 (18) 0.56884 (6) 0.0256 (3)
H2 0.1995 (17) 0.460 (2) 0.5535 (6) 0.030 (4)*
C3 0.05623 (16) 0.25908 (17) 0.47805 (5) 0.0241 (3)
H31 −0.0374 (19) 0.210 (2) 0.4711 (6) 0.032 (4)*
H32 0.0550 (18) 0.373 (2) 0.4655 (7) 0.035 (4)*
C4 0.16946 (13) 0.17185 (16) 0.44337 (5) 0.0229 (3)
C5 0.14815 (14) 0.17126 (16) 0.38202 (5) 0.0231 (3)
C6 0.25102 (16) 0.09475 (17) 0.34846 (6) 0.0284 (4)
H6 0.3339 (19) 0.048 (2) 0.3658 (7) 0.038 (5)*
C7 0.23147 (18) 0.08608 (18) 0.29144 (6) 0.0333 (4)
H7 0.3021 (18) 0.033 (2) 0.2690 (7) 0.035 (4)*
C8 0.11013 (19) 0.15544 (19) 0.26698 (6) 0.0352 (4)
H8 0.0997 (19) 0.151 (2) 0.2269 (9) 0.046 (5)*
C9 0.00879 (18) 0.23382 (18) 0.29988 (6) 0.0320 (4)
H9 −0.0794 (18) 0.281 (2) 0.2837 (7) 0.036 (4)*
C10 0.02666 (15) 0.24132 (16) 0.35721 (6) 0.0263 (4)
H10 −0.0483 (18) 0.296 (2) 0.3812 (6) 0.031 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.0267 (5) 0.0372 (6) 0.0263 (5) 0.0052 (4) −0.0022 (4) 0.0031 (4)
N1 0.0264 (6) 0.0252 (6) 0.0194 (6) −0.0012 (4) 0.0005 (4) 0.0005 (4)
N2 0.0414 (7) 0.0283 (6) 0.0221 (6) −0.0054 (5) 0.0016 (5) 0.0028 (5)
N3 0.0340 (7) 0.0349 (7) 0.0216 (6) −0.0024 (5) −0.0009 (5) −0.0004 (5)
C1 0.0385 (8) 0.0312 (8) 0.0208 (7) −0.0012 (6) 0.0023 (6) 0.0016 (5)
C2 0.0252 (7) 0.0295 (7) 0.0222 (7) −0.0023 (5) 0.0005 (5) −0.0006 (5)
C3 0.0259 (7) 0.0272 (7) 0.0191 (6) 0.0006 (5) −0.0022 (5) −0.0005 (5)
C4 0.0226 (6) 0.0226 (6) 0.0235 (7) −0.0033 (5) 0.0000 (5) 0.0016 (5)
C5 0.0261 (7) 0.0221 (7) 0.0211 (7) −0.0030 (5) 0.0002 (5) 0.0020 (5)
C6 0.0323 (7) 0.0271 (7) 0.0259 (7) 0.0009 (6) 0.0039 (6) 0.0032 (5)
C7 0.0434 (9) 0.0311 (7) 0.0256 (7) −0.0007 (7) 0.0100 (6) −0.0008 (6)
C8 0.0538 (10) 0.0320 (8) 0.0196 (7) −0.0073 (7) 0.0006 (6) 0.0016 (6)
C9 0.0397 (8) 0.0306 (7) 0.0258 (7) −0.0030 (6) −0.0079 (6) 0.0031 (5)
C10 0.0279 (7) 0.0268 (7) 0.0242 (7) −0.0008 (5) −0.0018 (5) −0.0006 (5)

Geometric parameters (Å, °)

O—C4 1.2170 (16) C4—C5 1.4884 (17)
N1—N2 1.3585 (16) C5—C6 1.398 (2)
N1—C2 1.3351 (18) C5—C10 1.3998 (19)
N1—C3 1.4476 (16) C6—H6 0.956 (18)
N2—C1 1.3247 (18) C7—C6 1.3851 (19)
N3—C1 1.356 (2) C7—H7 0.954 (18)
N3—C2 1.3258 (18) C8—C7 1.393 (2)
C1—H1 1.001 (17) C8—C9 1.386 (2)
C2—H2 0.972 (17) C8—H8 0.97 (2)
C3—H31 0.974 (18) C9—H9 0.987 (18)
C3—H32 0.973 (17) C10—C9 1.390 (2)
C4—C3 1.5195 (18) C10—H10 1.007 (17)
C2—N1—N2 110.05 (11) C5—C4—C3 116.93 (11)
C2—N1—C3 129.14 (12) C6—C5—C10 119.22 (13)
N2—N1—C3 120.80 (11) C6—C5—C4 118.82 (12)
C1—N2—N1 101.81 (11) C10—C5—C4 121.93 (12)
C2—N3—C1 102.23 (11) C7—C6—C5 120.26 (14)
N2—C1—N3 115.39 (12) C7—C6—H6 121.1 (10)
N2—C1—H1 121.1 (10) C5—C6—H6 118.6 (10)
N3—C1—H1 123.4 (10) C6—C7—C8 120.28 (14)
N3—C2—N1 110.53 (13) C6—C7—H7 119.5 (10)
N3—C2—H2 127.4 (9) C8—C7—H7 120.2 (10)
N1—C2—H2 122.1 (9) C9—C8—C7 119.79 (13)
N1—C3—C4 112.73 (11) C9—C8—H8 121.0 (11)
N1—C3—H31 109.1 (9) C7—C8—H8 119.2 (11)
C4—C3—H31 109.5 (10) C8—C9—C10 120.31 (14)
N1—C3—H32 109.9 (10) C8—C9—H9 121.3 (10)
C4—C3—H32 106.3 (10) C10—C9—H9 118.3 (10)
H31—C3—H32 109.2 (14) C9—C10—C5 120.11 (13)
O—C4—C5 122.34 (12) C9—C10—H10 120.4 (9)
O—C4—C3 120.73 (12) C5—C10—H10 119.5 (9)
C2—N1—N2—C1 0.33 (15) C3—C4—C5—C6 178.95 (12)
C3—N1—N2—C1 −178.72 (12) O—C4—C5—C10 178.18 (12)
N2—N1—C2—N3 −0.35 (16) C3—C4—C5—C10 −2.67 (18)
C3—N1—C2—N3 178.60 (12) C10—C5—C6—C7 −1.1 (2)
C2—N1—C3—C4 93.49 (16) C4—C5—C6—C7 177.33 (12)
N2—N1—C3—C4 −87.66 (15) C6—C5—C10—C9 0.3 (2)
N1—N2—C1—N3 −0.21 (17) C4—C5—C10—C9 −178.08 (12)
C2—N3—C1—N2 0.01 (17) C8—C7—C6—C5 0.9 (2)
C1—N3—C2—N1 0.20 (15) C9—C8—C7—C6 0.2 (2)
O—C4—C3—N1 −0.91 (18) C7—C8—C9—C10 −1.0 (2)
C5—C4—C3—N1 179.92 (11) C5—C10—C9—C8 0.7 (2)
O—C4—C5—C6 −0.21 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···Oi 0.970 (16) 2.449 (15) 3.2595 (17) 140.9 (12)
C3—H32···Oi 0.973 (16) 2.489 (16) 3.2601 (17) 136.1 (13)
C8—H8···N3ii 0.97 (2) 2.61 (2) 3.5405 (19) 160.2 (14)
C1—H1···Cg2iii 1.001 (17) 2.840 (18) 3.620 (2) 135.20 (13)
C2—H2···Cg1iv 0.972 (17) 3.013 (16) 3.829 (2) 142.42 (12)

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2439).

References

  1. Bodey, G. P. (1992). Clin. Infect. Dis.14, S161–S169. [DOI] [PubMed]
  2. Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci.93, 601–611. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Holla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Il Farmaco, 51, 793–799. [PubMed]
  6. Liu, J., Li, L., Dai, H., Liu, Z. & Fang, J. (2006). J. Organomet. Chem.691, 2686–2690.
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1358. [DOI] [PMC free article] [PubMed]
  10. Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254. [DOI] [PMC free article] [PubMed]
  11. Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.
  12. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.
  13. Sengupta, A. K., Bajaj, O. P. & Chandra, U. (1978). J. Indian Chem. Soc.55, 962–964.
  14. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  17. Sui, Z. H., Guan, J. H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett.8, 1929–1934. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023258/xu2439sup1.cif

e-64-o1604-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023258/xu2439Isup2.hkl

e-64-o1604-Isup2.hkl (58.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES