Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):o1606. doi: 10.1107/S1600536808022976

2-Hydr­oxy-5-nitro­benzaldehyde thio­semicarbazone

Abeer A Alhadi a, Hapipah M Ali a, Subramaniam Puvaneswary a, Ward T Robinson a, Seik Weng Ng a,*
PMCID: PMC2962218  PMID: 21203299

Abstract

The mol­ecule of the title compound, C8H8N4O3S, is planar. Adjacent mol­ecules are linked through O—H⋯S, N—H⋯S and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the structure of 2-hydroxy­benzaldehyde thio­semicarbazone, see: Chattopadhyay et al. (1988).graphic file with name e-64-o1606-scheme1.jpg

Experimental

Crystal data

  • C8H8N4O3S

  • M r = 240.24

  • Monoclinic, Inline graphic

  • a = 12.6157 (3) Å

  • b = 5.4815 (2) Å

  • c = 14.2397 (2) Å

  • β = 94.039 (2)°

  • V = 982.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 (2) K

  • 0.49 × 0.01 × 0.01 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.856, T max = 0.997

  • 9462 measured reflections

  • 2247 independent reflections

  • 1725 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.111

  • S = 1.04

  • 2247 reflections

  • 161 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022976/rk2102sup1.cif

e-64-o1606-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022976/rk2102Isup2.hkl

e-64-o1606-Isup2.hkl (110.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.84 (1) 2.34 (1) 3.175 (2) 170 (3)
N3—H31⋯S1ii 0.85 (1) 2.50 (1) 3.337 (2) 167 (2)
N4—H41⋯O2iii 0.85 (1) 2.14 (1) 2.987 (2) 172 (3)
N4—H42⋯O3iv 0.85 (1) 2.31 (2) 3.044 (2) 144 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Science Fund (grant Nos. 12-02-03-2031 and 12-02-03-2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Salicylaldehyde thiosemicarbazone uses its 2-hydroxy group to form an intramolecular hydrogen bond (Chattopadhyay et al., 1988). In the present compound, the electron-withdrawing nitro group that is para to the hydroxy group renders the hydroxy group much more acidic, so that the compound (Scheme) is able to use the hydroxy group to form a hydrogen bond to an adjacent molecule instead (Fig. 1).

Experimental

The Schiff base was prepared by refluxing thiosemicarbazide (0.30 g, 3.3 mmol) and 5-nitro-2-hydroxybenzaldehyde (0.55 g, 3.3 mmol) in ethanol for 2 h. The product was recrystallized from ethanol.

Refinement

Nitrogen- and oxygen-bound hydrogen atoms were refined with a distance restraint of N—H and O—H 0.85 (1) Å. Their temperature factors were freely refined. The carbon-bound ones were placed in geometric positions with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound with the atom numbering scheme (Barbour, 2001). Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C8H8N4O3S F000 = 496
Mr = 240.24 Dx = 1.625 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2540 reflections
a = 12.6157 (3) Å θ = 2.2–29.5º
b = 5.4815 (2) Å µ = 0.33 mm1
c = 14.2397 (2) Å T = 100 (2) K
β = 94.039 (2)º Block, yellow
V = 982.27 (5) Å3 0.49 × 0.01 × 0.01 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 2247 independent reflections
Radiation source: fine-focus sealed tube 1725 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.037
T = 100(2) K θmax = 27.5º
ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −16→15
Tmin = 0.856, Tmax = 0.997 k = −5→7
9462 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111   w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4126P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2247 reflections Δρmax = 0.47 e Å3
161 parameters Δρmin = −0.23 e Å3
8 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.45571 (4) 1.58779 (11) 0.35227 (3) 0.02368 (17)
O1 0.78686 (12) 0.8925 (3) 0.67628 (10) 0.0271 (4)
O2 0.92212 (11) 0.0797 (3) 0.40282 (10) 0.0258 (3)
O3 0.82499 (11) 0.3034 (3) 0.30592 (9) 0.0243 (3)
N1 0.86480 (13) 0.2593 (3) 0.38518 (11) 0.0200 (4)
N2 0.64392 (12) 1.0445 (3) 0.42660 (11) 0.0179 (4)
N3 0.56870 (13) 1.2266 (3) 0.42711 (11) 0.0199 (4)
N4 0.57458 (14) 1.2637 (4) 0.26788 (12) 0.0222 (4)
C1 0.80683 (15) 0.7307 (4) 0.60870 (13) 0.0201 (4)
C2 0.87612 (16) 0.5353 (4) 0.62369 (13) 0.0215 (4)
H2 0.9106 0.5093 0.6843 0.026*
C3 0.89488 (15) 0.3793 (4) 0.55093 (13) 0.0211 (4)
H3 0.9414 0.2440 0.5609 0.025*
C4 0.84439 (15) 0.4236 (4) 0.46231 (13) 0.0185 (4)
C5 0.77372 (15) 0.6132 (4) 0.44565 (13) 0.0180 (4)
H5 0.7398 0.6378 0.3847 0.022*
C6 0.75301 (14) 0.7676 (4) 0.51947 (13) 0.0179 (4)
C7 0.67610 (15) 0.9650 (4) 0.50831 (13) 0.0197 (4)
H7 0.6492 1.0363 0.5626 0.024*
C8 0.53819 (15) 1.3452 (4) 0.34732 (13) 0.0195 (4)
H1 0.8337 (17) 0.880 (5) 0.7212 (14) 0.044 (8)*
H31 0.5515 (19) 1.281 (5) 0.4800 (11) 0.036 (7)*
H41 0.570 (2) 1.360 (4) 0.2208 (13) 0.038 (7)*
H42 0.6185 (16) 1.145 (3) 0.2711 (17) 0.030 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0247 (3) 0.0265 (3) 0.0193 (2) 0.0085 (2) −0.00213 (18) −0.0004 (2)
O1 0.0303 (8) 0.0290 (9) 0.0209 (7) 0.0072 (7) −0.0059 (6) −0.0041 (6)
O2 0.0268 (8) 0.0220 (8) 0.0287 (7) 0.0074 (7) 0.0022 (6) −0.0008 (6)
O3 0.0268 (8) 0.0259 (9) 0.0200 (7) 0.0004 (7) 0.0016 (6) 0.0007 (6)
N1 0.0181 (8) 0.0185 (9) 0.0239 (8) −0.0036 (7) 0.0047 (6) 0.0002 (7)
N2 0.0152 (8) 0.0175 (9) 0.0210 (7) 0.0005 (7) 0.0014 (6) 0.0008 (6)
N3 0.0201 (8) 0.0220 (10) 0.0174 (8) 0.0051 (7) 0.0008 (6) 0.0007 (7)
N4 0.0249 (9) 0.0228 (10) 0.0191 (8) 0.0049 (8) 0.0019 (7) 0.0015 (7)
C1 0.0201 (10) 0.0204 (11) 0.0200 (9) −0.0020 (9) 0.0024 (7) −0.0005 (8)
C2 0.0197 (10) 0.0242 (12) 0.0200 (9) 0.0011 (9) −0.0029 (7) 0.0025 (8)
C3 0.0178 (10) 0.0198 (11) 0.0254 (10) 0.0022 (8) −0.0001 (7) 0.0037 (8)
C4 0.0158 (9) 0.0175 (10) 0.0224 (9) −0.0035 (8) 0.0029 (7) −0.0005 (8)
C5 0.0155 (9) 0.0187 (11) 0.0198 (9) −0.0028 (8) 0.0012 (7) 0.0043 (7)
C6 0.0149 (9) 0.0189 (11) 0.0199 (9) −0.0013 (8) 0.0012 (7) 0.0023 (8)
C7 0.0188 (10) 0.0205 (11) 0.0198 (9) 0.0007 (8) 0.0015 (7) −0.0010 (8)
C8 0.0166 (9) 0.0208 (11) 0.0207 (9) −0.0024 (8) −0.0016 (7) 0.0009 (8)

Geometric parameters (Å, °)

S1—C8 1.693 (2) N4—H42 0.852 (10)
O1—C1 1.345 (2) C1—C2 1.390 (3)
O1—H1 0.842 (10) C1—C6 1.412 (2)
O2—N1 1.237 (2) C2—C3 1.377 (3)
O3—N1 1.227 (2) C2—H2 0.9500
N1—C4 1.457 (3) C3—C4 1.394 (3)
N2—C7 1.281 (2) C3—H3 0.9500
N2—N3 1.378 (2) C4—C5 1.379 (3)
N3—C8 1.342 (2) C5—C6 1.389 (3)
N3—H31 0.852 (10) C5—H5 0.9500
N4—C8 1.328 (3) C6—C7 1.455 (3)
N4—H41 0.853 (10) C7—H7 0.9500
C1—O1—H1 109 (2) C2—C3—H3 120.6
O3—N1—O2 122.64 (17) C4—C3—H3 120.6
O3—N1—C4 119.27 (17) C5—C4—C3 122.38 (19)
O2—N1—C4 118.09 (16) C5—C4—N1 118.87 (17)
C7—N2—N3 114.57 (16) C3—C4—N1 118.73 (18)
C8—N3—N2 120.22 (16) C4—C5—C6 118.88 (17)
C8—N3—H31 120.1 (18) C4—C5—H5 120.6
N2—N3—H31 118.6 (18) C6—C5—H5 120.6
C8—N4—H41 116.8 (18) C5—C6—C1 119.31 (18)
C8—N4—H42 118.3 (17) C5—C6—C7 122.03 (17)
H41—N4—H42 122 (2) C1—C6—C7 118.65 (18)
O1—C1—C2 123.07 (17) N2—C7—C6 121.22 (18)
O1—C1—C6 116.53 (18) N2—C7—H7 119.4
C2—C1—C6 120.40 (18) C6—C7—H7 119.4
C3—C2—C1 120.18 (18) N4—C8—N3 117.54 (19)
C3—C2—H2 119.9 N4—C8—S1 123.38 (15)
C1—C2—H2 119.9 N3—C8—S1 119.07 (15)
C2—C3—C4 118.77 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···S1i 0.84 (1) 2.34 (1) 3.175 (2) 170 (3)
N3—H31···S1ii 0.85 (1) 2.50 (1) 3.337 (2) 167 (2)
N4—H41···O2iii 0.85 (1) 2.14 (1) 2.987 (2) 172 (3)
N4—H42···O3iv 0.85 (1) 2.31 (2) 3.044 (2) 144 (2)

Symmetry codes: (i) x+1/2, −y+5/2, z+1/2; (ii) −x+1, −y+3, −z+1; (iii) −x+3/2, y+3/2, −z+1/2; (iv) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2102).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025–1028. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022976/rk2102sup1.cif

e-64-o1606-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022976/rk2102Isup2.hkl

e-64-o1606-Isup2.hkl (110.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES