Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1372. doi: 10.1107/S160053680801876X

(Z)-3-Chloro-3-phenyl-N-[(S)-1-phenyl­ethyl]prop-2-enamide

Neudo A Urdaneta a,*, Teresa González b, Alexander Briceño b,*
PMCID: PMC2962220  PMID: 21203094

Abstract

The asymmetric unit of the title compound, C17H16ClNO, contains two crystallographically independent mol­ecules. These mol­ecules are connected in an alternating fashion through N—H⋯O and C—H⋯O hydrogen bonds, generating one-dimensional chains of graph sets R 2 1(6) and C(4) along the a axis.

Related literature

For related literature, see: Kishikawa et al., (1997); Cherry et al. (2003); Pontiki & Hadjipavlou (2007); Urdaneta et al. (2004). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-64-o1372-scheme1.jpg

Experimental

Crystal data

  • C17H16ClNO

  • M r = 285.76

  • Orthorhombic, Inline graphic

  • a = 9.803 (3) Å

  • b = 14.976 (5) Å

  • c = 20.823 (6) Å

  • V = 3057.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 (2) K

  • 0.48 × 0.38 × 0.28 mm

Data collection

  • Rigaku AFC-7S Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998) T min = 0.897, T max = 0.985 (expected range = 0.850–0.934)

  • 32660 measured reflections

  • 5802 independent reflections

  • 3687 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.161

  • S = 1.07

  • 5802 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1693 Friedel pairs

  • Flack parameter: −0.03 (9)

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801876X/hb2746sup1.cif

e-64-o1372-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801876X/hb2746Isup2.hkl

e-64-o1372-Isup2.hkl (284.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.97 1.89 2.852 (4) 174
N2—H2N⋯O1 0.95 2.04 2.933 (5) 157
C10—H10⋯Cl1 0.93 2.64 3.021 (6) 105
C13—H13⋯N1 0.93 2.55 2.874 (5) 101
C19—H19⋯O1 0.93 2.50 3.315 (5) 146
C27—H27⋯Cl2 0.93 2.65 3.028 (6) 105
C30—H30⋯N2 0.93 2.65 2.951 (5) 99

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank FONACIT-MCT Venezuela for financial support (projects: LAB-199700821).

supplementary crystallographic information

Comment

The title compound, (I), represents a valuable intermediate for the synthesis of biologically active disubstituted pyrimidones (Cherry et al., 2003), phenyl-substituted amides with antioxidant and anti-inflamatory activity as novel lipoxygenase inhibitor (Pontiki & Hadjipavlou, 2007), and also as precursor for photochemical studies (Kishikawa et al., 1997).

The asymmetric unit of (I) contains two crystallographically indepedent molecules of the same stereochemical configuration (Fig. 1): C4 and C21 have S configuration. Each molecule displays two kinds of intramolecular C—H···Cl and C—H···N hydrogen bonds (Table 1). These interactions lead to the formation of five-membered rings described by graph-set symbol S(5) (Bernstein et al., 1995). In each molecule the phenyl groups are twisted with respect to the aliphatic chain defined by C4/N1/C3/O1/C2/C1 (CH1) and C21/N2/C18/C19/C20/O2 atoms (CH2), respectively. The dihedral angles between the C5—C10 and C12—C17 rings and the mean plane of the CH1 are 31.8 (2)° and 88.6 (2)°, for the molecule 1; C29—C34: 81.8 (2)° and C22—C2: 33.8 (2)° for the rings of the molecule 2. These molecules form a dimer linked through a N—H···O and C—H···O intermolecular hydrogen bonds in which the O atom from carbonyl group acts as a double aceptor of hydrogen bonds (Fig 1). This interaction produces a supramolecular motif described by the symbol R21(6). These dimers are connected in an alternate fashion via remaining N—H···O intermolecular hydrogen bonds, generating one-dimensional chains along the a axis (Fig. 2), this interaction is described by the symbol C(4). Adjacent chains are assembled through C—H···π interactions to afford a three-dimensional array.

Experimental

The title compound was prepared according to a reported procedure (Urdaneta et al., 2004), and colourless blocks of (I) were grown from a saturated AcOEt/Et2O (1:9) solution kept at 277 K.

Refinement

The N-bound H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in idealised positions (C—H = 0.93-0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omited for clarity and dashed lines indicate the donor···acceptor interactions for the hydrogen bonds.

Fig. 2.

Fig. 2.

View of the one-dimensional ribbons along the a axis, generated by intermolecular hydrogen bonds. Intramolecular hydrogen bonds are also shown (dashed lines). Most H atoms have been omited for clarity

Crystal data

C17H16ClNO F000 = 1200
Mr = 285.76 Dx = 1.242 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71070 Å
Hall symbol: P 2ac 2ab Cell parameters from 16200 reflections
a = 9.803 (3) Å θ = 1.7–27.5º
b = 14.976 (5) Å µ = 0.25 mm1
c = 20.823 (6) Å T = 293 (2) K
V = 3057.2 (15) Å3 Block, colourless
Z = 8 0.48 × 0.38 × 0.28 mm

Data collection

Rigaku AFC-7S Mercury diffractometer 5802 independent reflections
Radiation source: Normal-focus sealed tube 3687 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.063
T = 293(2) K θmax = 28.0º
ω scans θmin = 1.7º
Absorption correction: multi-scan(Jacobson, 1998) h = −8→11
Tmin = 0.897, Tmax = 0.985 k = −17→17
32660 measured reflections l = −24→24

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0533P)2 + 1.3975P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.070 (Δ/σ)max < 0.001
wR(F2) = 0.161 Δρmax = 0.18 e Å3
S = 1.07 Δρmin = −0.28 e Å3
5802 reflections Extinction correction: SHELXLTL-NT (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
362 parameters Extinction coefficient: 0.0040 (7)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1693 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.03 (9)
Hydrogen site location: difmap and geom

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.22516 (10) 0.07828 (9) 0.67679 (6) 0.0689 (4)
Cl2 0.67708 (13) −0.13296 (11) 0.71017 (7) 0.0894 (5)
O1 0.1409 (3) −0.0600 (2) 0.58351 (14) 0.0657 (9)
O2 0.6351 (3) −0.0446 (3) 0.58420 (16) 0.0829 (11)
N1 −0.0829 (3) −0.0843 (2) 0.56625 (16) 0.0500 (9)
H1N −0.1799 −0.0749 0.5718 0.075*
N2 0.4251 (4) −0.0362 (3) 0.54294 (19) 0.0606 (10)
H2N 0.3285 −0.0424 0.5436 0.091*
C1 0.0512 (4) 0.0668 (3) 0.68930 (19) 0.0472 (10)
C2 −0.0235 (4) 0.0157 (3) 0.6501 (2) 0.0545 (12)
H2 −0.1172 0.0186 0.6567 0.065*
C3 0.0199 (4) −0.0450 (3) 0.5976 (2) 0.0530 (11)
C4 −0.0595 (4) −0.1488 (3) 0.5152 (2) 0.0505 (11)
H4 0.0189 −0.1856 0.5275 0.061*
C5 −0.0041 (4) 0.1173 (3) 0.7437 (2) 0.0559 (12)
C6 −0.1234 (5) 0.0899 (3) 0.7744 (2) 0.0677 (13)
H6 −0.1676 0.0382 0.7610 0.081*
C7 −0.1763 (5) 0.1392 (4) 0.8244 (2) 0.0772 (15)
H7 −0.2560 0.1202 0.8445 0.093*
C8 −0.1139 (5) 0.2153 (4) 0.8451 (2) 0.0749 (15)
H8 −0.1520 0.2489 0.8781 0.090*
C9 0.0041 (5) 0.2415 (4) 0.8171 (2) 0.0771 (15)
H9 0.0488 0.2921 0.8322 0.092*
C10 0.0592 (5) 0.1940 (4) 0.7663 (3) 0.0736 (15)
H10 0.1394 0.2137 0.7471 0.088*
C11 −0.1834 (5) −0.2102 (3) 0.5095 (3) 0.0742 (15)
H11A −0.2015 −0.2374 0.5503 0.111*
H11B −0.1652 −0.2558 0.4782 0.111*
H11C −0.2613 −0.1760 0.4963 0.111*
C12 −0.0270 (4) −0.1055 (3) 0.4513 (2) 0.0498 (11)
C13 −0.0587 (5) −0.0188 (3) 0.4370 (2) 0.0660 (13)
H13 −0.1011 0.0165 0.4679 0.079*
C14 −0.0291 (6) 0.0174 (4) 0.3779 (3) 0.0816 (16)
H14 −0.0522 0.0762 0.3688 0.098*
C15 0.0353 (6) −0.0344 (4) 0.3321 (3) 0.0823 (17)
H15 0.0554 −0.0101 0.2921 0.099*
C16 0.0697 (5) −0.1213 (4) 0.3450 (2) 0.0748 (15)
H16 0.1129 −0.1561 0.3141 0.090*
C17 0.0391 (4) −0.1558 (3) 0.4044 (2) 0.0598 (13)
H17 0.0633 −0.2145 0.4135 0.072*
C18 0.5007 (4) −0.1343 (3) 0.6992 (2) 0.0566 (12)
C19 0.4457 (4) −0.0998 (3) 0.6462 (2) 0.0562 (12)
H19 0.3510 −0.1024 0.6444 0.067*
C20 0.5118 (4) −0.0577 (3) 0.5898 (2) 0.0564 (12)
C21 0.4705 (5) −0.0075 (4) 0.4790 (2) 0.0692 (14)
H21 0.5526 −0.0416 0.4682 0.083*
C22 0.4252 (5) −0.1776 (3) 0.7526 (2) 0.0643 (13)
C23 0.2911 (5) −0.1517 (4) 0.7646 (2) 0.0753 (15)
H23 0.2495 −0.1081 0.7395 0.090*
C24 0.2199 (7) −0.1923 (5) 0.8150 (3) 0.104 (2)
H24 0.1321 −0.1733 0.8250 0.125*
C25 0.2783 (10) −0.2597 (6) 0.8497 (3) 0.118 (3)
H25 0.2282 −0.2879 0.8817 0.141*
C26 0.4087 (9) −0.2858 (5) 0.8380 (3) 0.110 (2)
H26 0.4480 −0.3314 0.8620 0.132*
C27 0.4825 (6) −0.2440 (4) 0.7900 (3) 0.0804 (16)
H27 0.5725 −0.2608 0.7827 0.096*
C28 0.3596 (6) −0.0315 (4) 0.4295 (2) 0.0913 (18)
H28A 0.3381 −0.0938 0.4328 0.137*
H28B 0.3924 −0.0188 0.3870 0.137*
H28C 0.2792 0.0032 0.4377 0.137*
C29 0.5052 (5) 0.0901 (4) 0.4736 (2) 0.0669 (14)
C30 0.4374 (6) 0.1545 (4) 0.5075 (3) 0.0836 (16)
H30 0.3710 0.1374 0.5370 0.100*
C31 0.4653 (8) 0.2447 (5) 0.4992 (4) 0.107 (2)
H31 0.4184 0.2873 0.5231 0.128*
C32 0.5621 (9) 0.2707 (5) 0.4559 (4) 0.113 (2)
H32 0.5811 0.3310 0.4502 0.136*
C33 0.6305 (7) 0.2085 (6) 0.4209 (4) 0.118 (3)
H33 0.6956 0.2267 0.3912 0.142*
C34 0.6043 (6) 0.1177 (5) 0.4292 (3) 0.0914 (19)
H34 0.6523 0.0757 0.4053 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0419 (6) 0.0814 (9) 0.0833 (9) −0.0033 (6) 0.0006 (5) −0.0198 (7)
Cl2 0.0494 (7) 0.1156 (12) 0.1032 (11) 0.0039 (7) −0.0093 (7) 0.0216 (9)
O1 0.0387 (17) 0.089 (3) 0.069 (2) 0.0026 (16) 0.0028 (14) −0.0176 (18)
O2 0.0356 (18) 0.127 (3) 0.086 (2) 0.0029 (17) 0.0049 (16) 0.012 (2)
N1 0.0369 (18) 0.063 (2) 0.050 (2) −0.0017 (17) −0.0002 (15) −0.0064 (19)
N2 0.0381 (19) 0.074 (3) 0.070 (3) −0.0029 (18) −0.0024 (18) 0.005 (2)
C1 0.035 (2) 0.058 (3) 0.049 (3) −0.003 (2) −0.0022 (18) 0.002 (2)
C2 0.042 (2) 0.063 (3) 0.059 (3) 0.002 (2) 0.006 (2) 0.005 (2)
C3 0.051 (3) 0.059 (3) 0.049 (3) 0.002 (2) 0.003 (2) −0.002 (2)
C4 0.050 (2) 0.053 (3) 0.049 (3) 0.003 (2) −0.007 (2) 0.003 (2)
C5 0.050 (2) 0.072 (3) 0.046 (3) 0.002 (2) 0.001 (2) −0.004 (2)
C6 0.067 (3) 0.074 (4) 0.062 (3) −0.011 (3) 0.017 (2) −0.013 (3)
C7 0.068 (3) 0.099 (4) 0.065 (3) −0.007 (3) 0.022 (3) −0.015 (3)
C8 0.071 (3) 0.092 (4) 0.061 (3) 0.006 (3) 0.010 (3) −0.023 (3)
C9 0.077 (3) 0.081 (4) 0.073 (4) −0.010 (3) 0.013 (3) −0.025 (3)
C10 0.059 (3) 0.085 (4) 0.077 (4) −0.010 (3) 0.002 (3) −0.019 (3)
C11 0.080 (3) 0.068 (4) 0.075 (3) −0.023 (3) −0.010 (3) −0.003 (3)
C12 0.048 (2) 0.060 (3) 0.042 (3) −0.004 (2) −0.0019 (18) −0.002 (2)
C13 0.086 (4) 0.056 (3) 0.056 (3) 0.004 (3) 0.003 (3) 0.006 (3)
C14 0.110 (5) 0.059 (4) 0.076 (4) 0.000 (3) 0.005 (3) 0.018 (3)
C15 0.103 (4) 0.086 (5) 0.058 (3) −0.022 (3) 0.011 (3) 0.007 (3)
C16 0.085 (4) 0.087 (4) 0.053 (3) −0.004 (3) 0.010 (3) −0.009 (3)
C17 0.057 (3) 0.067 (3) 0.055 (3) 0.001 (2) −0.001 (2) −0.009 (3)
C18 0.042 (2) 0.062 (3) 0.066 (3) 0.004 (2) 0.000 (2) −0.011 (3)
C19 0.039 (2) 0.068 (3) 0.061 (3) −0.001 (2) 0.004 (2) −0.002 (3)
C20 0.037 (2) 0.063 (3) 0.069 (3) 0.004 (2) 0.003 (2) −0.005 (2)
C21 0.057 (3) 0.083 (4) 0.067 (3) 0.006 (3) 0.007 (2) 0.004 (3)
C22 0.065 (3) 0.067 (3) 0.060 (3) −0.007 (3) −0.001 (3) −0.017 (3)
C23 0.069 (3) 0.083 (4) 0.073 (3) −0.011 (3) 0.010 (3) −0.008 (3)
C24 0.089 (4) 0.123 (6) 0.100 (5) −0.024 (4) 0.035 (4) −0.025 (5)
C25 0.155 (8) 0.132 (7) 0.066 (4) −0.041 (6) 0.025 (5) −0.001 (4)
C26 0.150 (7) 0.110 (6) 0.070 (4) −0.006 (5) 0.011 (5) 0.012 (4)
C27 0.093 (4) 0.091 (4) 0.058 (3) 0.001 (3) −0.006 (3) 0.005 (3)
C28 0.101 (4) 0.100 (5) 0.073 (4) −0.022 (3) −0.018 (3) 0.002 (3)
C29 0.050 (3) 0.088 (4) 0.062 (3) −0.002 (3) −0.005 (2) 0.009 (3)
C30 0.083 (4) 0.084 (5) 0.084 (4) −0.003 (3) 0.006 (3) 0.007 (3)
C31 0.137 (6) 0.075 (5) 0.108 (5) −0.003 (4) 0.003 (5) 0.011 (4)
C32 0.127 (6) 0.088 (6) 0.124 (7) −0.021 (5) −0.027 (5) 0.024 (5)
C33 0.098 (5) 0.124 (7) 0.133 (7) −0.027 (5) −0.004 (5) 0.062 (6)
C34 0.071 (4) 0.108 (5) 0.096 (5) −0.003 (3) 0.012 (3) 0.019 (4)

Geometric parameters (Å, °)

Cl1—C1 1.734 (4) C15—C16 1.370 (7)
Cl2—C18 1.745 (4) C15—H15 0.9300
O1—C3 1.242 (5) C16—C17 1.374 (7)
O2—C20 1.231 (5) C16—H16 0.9300
N1—C3 1.338 (5) C17—H17 0.9300
N1—C4 1.455 (5) C18—C19 1.332 (6)
N1—H1N 0.9677 C18—C22 1.484 (7)
N2—C20 1.333 (6) C19—C20 1.483 (6)
N2—C21 1.469 (6) C19—H19 0.9300
N2—H2N 0.9518 C21—C29 1.504 (8)
C1—C2 1.338 (6) C21—C28 1.541 (7)
C1—C5 1.467 (6) C21—H21 0.9800
C2—C3 1.483 (6) C22—C27 1.382 (7)
C2—H2 0.9300 C22—C23 1.394 (7)
C4—C12 1.513 (6) C23—C24 1.399 (8)
C4—C11 1.528 (6) C23—H23 0.9300
C4—H4 0.9800 C24—C25 1.367 (10)
C5—C10 1.387 (7) C24—H24 0.9300
C5—C6 1.394 (6) C25—C26 1.359 (9)
C6—C7 1.378 (6) C25—H25 0.9300
C6—H6 0.9300 C26—C27 1.385 (8)
C7—C8 1.363 (7) C26—H26 0.9300
C7—H7 0.9300 C27—H27 0.9300
C8—C9 1.353 (7) C28—H28A 0.9600
C8—H8 0.9300 C28—H28B 0.9600
C9—C10 1.385 (7) C28—H28C 0.9600
C9—H9 0.9300 C29—C30 1.368 (7)
C10—H10 0.9300 C29—C34 1.404 (7)
C11—H11A 0.9600 C30—C31 1.390 (8)
C11—H11B 0.9600 C30—H30 0.9300
C11—H11C 0.9600 C31—C32 1.366 (10)
C12—C13 1.369 (6) C31—H31 0.9300
C12—C17 1.394 (6) C32—C33 1.359 (10)
C13—C14 1.376 (7) C32—H32 0.9300
C13—H13 0.9300 C33—C34 1.394 (9)
C14—C15 1.382 (7) C33—H33 0.9300
C14—H14 0.9300 C34—H34 0.9300
C3—N1—C4 122.0 (3) C16—C17—C12 121.9 (5)
C3—N1—H1N 128.2 C16—C17—H17 119.0
C4—N1—H1N 109.8 C12—C17—H17 119.0
C20—N2—C21 122.8 (4) C19—C18—C22 126.0 (4)
C20—N2—H2N 126.9 C19—C18—Cl2 120.3 (4)
C21—N2—H2N 110.1 C22—C18—Cl2 113.7 (4)
C2—C1—C5 124.4 (4) C18—C19—C20 130.1 (4)
C2—C1—Cl1 120.2 (3) C18—C19—H19 114.9
C5—C1—Cl1 115.4 (3) C20—C19—H19 114.9
C1—C2—C3 130.1 (4) O2—C20—N2 121.2 (4)
C1—C2—H2 115.0 O2—C20—C19 124.9 (4)
C3—C2—H2 115.0 N2—C20—C19 113.9 (4)
O1—C3—N1 121.6 (4) N2—C21—C29 114.9 (4)
O1—C3—C2 124.0 (4) N2—C21—C28 108.9 (4)
N1—C3—C2 114.4 (4) C29—C21—C28 109.6 (4)
N1—C4—C12 113.0 (3) N2—C21—H21 107.7
N1—C4—C11 109.3 (4) C29—C21—H21 107.7
C12—C4—C11 110.9 (3) C28—C21—H21 107.7
N1—C4—H4 107.8 C27—C22—C23 118.9 (5)
C12—C4—H4 107.8 C27—C22—C18 122.2 (5)
C11—C4—H4 107.8 C23—C22—C18 118.9 (5)
C10—C5—C6 117.7 (4) C22—C23—C24 118.9 (6)
C10—C5—C1 121.5 (4) C22—C23—H23 120.5
C6—C5—C1 120.8 (4) C24—C23—H23 120.5
C7—C6—C5 120.3 (5) C25—C24—C23 120.6 (6)
C7—C6—H6 119.9 C25—C24—H24 119.7
C5—C6—H6 119.9 C23—C24—H24 119.7
C8—C7—C6 121.2 (5) C26—C25—C24 120.8 (7)
C8—C7—H7 119.4 C26—C25—H25 119.6
C6—C7—H7 119.4 C24—C25—H25 119.6
C9—C8—C7 119.4 (5) C25—C26—C27 119.4 (7)
C9—C8—H8 120.3 C25—C26—H26 120.3
C7—C8—H8 120.3 C27—C26—H26 120.3
C8—C9—C10 120.9 (5) C22—C27—C26 121.3 (6)
C8—C9—H9 119.6 C22—C27—H27 119.3
C10—C9—H9 119.6 C26—C27—H27 119.3
C9—C10—C5 120.6 (5) C21—C28—H28A 109.5
C9—C10—H10 119.7 C21—C28—H28B 109.5
C5—C10—H10 119.7 H28A—C28—H28B 109.5
C4—C11—H11A 109.5 C21—C28—H28C 109.5
C4—C11—H11B 109.5 H28A—C28—H28C 109.5
H11A—C11—H11B 109.5 H28B—C28—H28C 109.5
C4—C11—H11C 109.5 C30—C29—C34 117.9 (6)
H11A—C11—H11C 109.5 C30—C29—C21 122.4 (5)
H11B—C11—H11C 109.5 C34—C29—C21 119.5 (5)
C13—C12—C17 117.8 (4) C29—C30—C31 121.7 (6)
C13—C12—C4 123.4 (4) C29—C30—H30 119.1
C17—C12—C4 118.8 (4) C31—C30—H30 119.1
C12—C13—C14 121.3 (5) C32—C31—C30 119.7 (7)
C12—C13—H13 119.3 C32—C31—H31 120.2
C14—C13—H13 119.3 C30—C31—H31 120.2
C13—C14—C15 119.6 (5) C33—C32—C31 120.1 (7)
C13—C14—H14 120.2 C33—C32—H32 119.9
C15—C14—H14 120.2 C31—C32—H32 119.9
C16—C15—C14 120.6 (5) C32—C33—C34 120.8 (7)
C16—C15—H15 119.7 C32—C33—H33 119.6
C14—C15—H15 119.7 C34—C33—H33 119.6
C15—C16—C17 118.7 (5) C33—C34—C29 119.8 (7)
C15—C16—H16 120.6 C33—C34—H34 120.1
C17—C16—H16 120.6 C29—C34—H34 120.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.97 1.89 2.852 (4) 174
N2—H2N···O1 0.95 2.04 2.933 (5) 157
C10—H10···Cl1 0.93 2.64 3.021 (6) 105
C13—H13···N1 0.93 2.55 2.874 (5) 101
C19—H19···O1 0.93 2.50 3.315 (5) 146
C27—H27···Cl2 0.93 2.65 3.028 (6) 105
C30—H30···N2 0.93 2.65 2.951 (5) 99

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2746).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Cherry, K., Abarbri, M., Parían, J.-L. & Duchene, A. (2003). Tetrahedron Lett.44, 5791–5794.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  6. Kishikawa, K., Satoshi, A., Shigeo, K., Makoto, Y. & Kazutoshi, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 77–84.
  7. Pontiki, E. & Hadjipavlou, L. (2007). Med. Chem.3, 175–186. [DOI] [PubMed]
  8. Rigaku (2002). CrystalClear Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Urdaneta, N. A., Salazar, J., Herrera, J. & López, S. (2004). Synth. Commun.34, 657–664.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801876X/hb2746sup1.cif

e-64-o1372-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801876X/hb2746Isup2.hkl

e-64-o1372-Isup2.hkl (284.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES