Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):o1643–o1644. doi: 10.1107/S1600536808022368

Hoodigogenin A from Hoodia gordonii

Yatin J Shukla a, Frank R Fronczek b,*, Rahul S Pawar c, Ikhlas A Khan a,c
PMCID: PMC2962224  PMID: 21203331

Abstract

The title mol­ecule (systematic name: 12-O-β-tigloyl-3β,14β-dihydroxy­pregn-5-en-20-one), C26H38O5, isolated from aerial parts of Hoodia gordonii, has its steroid A and C rings in chair conformations, its B ring in a half-chair conformation, and its five-membered ring in an envelope conformation. The OH group at the C/D ring junction forms an intra­molecular hydrogen bond with the keto substituent. The OH group on the A ring forms an inter­molecular hydrogen bond with the tiglate C=O group, propagating [010] chains in the crystal structure.

Related literature

For related literature, see: Allen (2002); Consumer Reports (2006); Etter (1990); MacLean & Luo (2004); Muller & Albers (2002); Nutrition Business Journal (2007); Pawar et al. (2007); Shin et al. (1990); Van Heerden et al. (1998).graphic file with name e-64-o1643-scheme1.jpg

Experimental

Crystal data

  • C26H38O5

  • M r = 430.56

  • Orthorhombic, Inline graphic

  • a = 7.6523 (9) Å

  • b = 10.6885 (12) Å

  • c = 27.705 (3) Å

  • V = 2266.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.27 × 0.05 mm

Data collection

  • Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer

  • Absorption correction: none

  • 9377 measured reflections

  • 2677 independent reflections

  • 2156 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.100

  • S = 1.02

  • 2677 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022368/hb2752sup1.cif

e-64-o1643-sup1.cif (25.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022368/hb2752Isup2.hkl

e-64-o1643-Isup2.hkl (131.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10H⋯O5i 0.84 2.11 2.941 (3) 173
O2—H20H⋯O3 0.84 2.10 2.886 (2) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. Phytochemical research on H. gordonii was funded by USFDA ‘Botanical Dietary Supplements: Science-Base for Authentication’ grant No. FD-U-002071-07. The authors thank Missouri Botanical Garden, USA for authentic plant material. YJS is thankful to the NCNPR for a graduate research assistantship.

supplementary crystallographic information

Comment

Hoodia gordonii, a succulent plant, is one of the 18 species of Hoodia (Fam. Asclepiadaceae) that are indigenous to the summer rainfall regions of the Kalahari Desert in South Africa, Botswana and Namibia (Muller & Albers, 2002). In past few years, Hoodia gordonii has gained popularity as a weight-loss dietary supplement (Van Heerden et al., 1998; Consumer Reports, 2006; Nutrition Business Journal, 2007; MacLean & Luo, 2004). As a part of our ongoing studies on Hoodia, we recently described isolation and characterization of 11 new oxypregnane glycosides (Hoodigosides A—K) along with P57AS3, the reported active oxypregnane glycoside from H. gordonii (Pawar et al., 2007). These glycosides consist of the title compound, hoodigogenin A, (I) as the aglycone. (I) is an unique pregnane derivative, owing to the cis-fusion of rings C and D of the steroid skeleton and the tiglic ester functionality at C12, and is only reported so far from H. gordonii.

The preliminary structure of (I) was elucidated with the help of one-dimensional and two-dimensional NMR, and HRESI-MS methods. The relative configurations were established using the NOESY correlations, in which (I) was characterized as having β-OH groups at C3, and C14. The tiglic ester substitution at C12 and the acetyl side chain at C17 were assigned a β orientation as well (Pawar et al., 2007). Here we report the crystal structure of (I) (Fig. 1), which confirms the relative configurations ascribed by the NMR studies.

The A and C rings (C1—C5, C10; C8, C9, C11—C14 respectively) have chair conformations, with endocyclic torsion-angle magnitudes in the range 42.2 (3) to 60.1 (2)°. The unsaturated B ring (C5—C10) has a half-chair conformation, with C8 displaced by 0.431 (2) Å and C9 by -0.373 (2) Å from the best plane of the other four C atoms. The five-membered D ring has an envelope conformation, with C14 at the flap position, displaced by 0.625 (2) Å from the best plane of the other four C atoms. The conformation of the C(O)Me group with respect to the main skeleton is defined by the torsion angle C16—C17—C20—O3, -37.5 (3)°, and the conformation of the tiglate substituent with respect to the skeleton by C11—C12—O4—C22, -102.8 (2)°. The tiglate is approximately planar, having a slight twist of -5.2 (3)° about its central bond (O4—C22—C23—C25).

The O2—H group forms an intramolecular hydrogen bond with C(O)Me carbonyl O3, making a discrete seven-membered ring, graph set S(7) (Etter, 1990). The O1—H group forms an intermolecular hydrogen bond with tiglate O5 (at 2-x, y-1/2, 3/2-z), thus making chains in the [0 1 0] direction (Table 1).

The Cambridge Structural Database (version 5.29, Nov. 2007; Allen, 2002) contains only one Δ5-pregnane steroid having O-substituents at C3, C12, and C14, refcode SENKUR (Shin et al., 1990). SENKUR, like (I) has OH groups at C3 and C14, a benzoate at C12, and also OH groups at C8 and C17. The conformations of the A, B, and C rings in (I) and SENKUR are similar, with 18 endocyclic torsion angles differing by a mean value of 5.7°. The five-membered ring of SENKUR, however, has an envelope conformation with a different atom, C13 at the flap position. This may be a result of the fact that SENKUR has the opposite configuration at C17, with the C(O)Me substituent α oriented (Shin et al., 1990).

Experimental

Powdered aerial parts of H. gordonii were purchased from a commercial supplier. The plant material was authenticated by Vaishali Joshi by comparing with authentic sample of H. gordonii obtained from Missouri Botanical Garden Missouri, USA. A voucher specimen (Voucher No. 2799) has been deposited in the repository of The National Center for Natural Product Research. 4.75 kg of coarsely powdered H. gordonii was extracted by percolation with CHCl3 (4 × 4 L). These extracts were combined and concentrated to obtain a thick mass (402.1 g). The extract was dissolved in MeOH/H2O (95:5 v/v) and partitioned with hexane. The polar fraction (136 g) was subjected to VLC on silica gel (1500 g) by eluting with gradients of CHCl3/MeOH/H2O from 100:4:0.5 (3L), up to 90:12:0.5 (by increasing MeOH and reducing CHCl3, each by 1% increments), to generate eight sub-fractions.

The sub-fraction 2 was repeatedly chromatographed on a silica gel column using isocratic solvent systems of hexane: CHCl3 (2:98) and CH2Cl2 (100%) that led to isolation of the title compound as an amorphous solid. Compound (I) displayed a prominent blue spot on TLC upon spraying with anisaldehyde-H2SO4 reagent, followed by heating at 100 °C for 1–2 minutes. Further, (I) was dissolved in acetone:hexane (70:30 v/v), which upon standing at room temperature for 24 h yielded 150 mg of colorless crystals. Colorless plates of (I) suitable for X-ray diffraction were obtained by recrystallization in hexane with few drops of acetone. The specific rotation of hoodigogenin A [α]25D is +1.33 (c0.3, CHCl3). Detailed HRESI-MS and NMR data for (1) were described previously (Pawar et al., 2007).

Refinement

The absolute configuration of (I) could not be determined, and was chosen to agree with the accepted configuration of pregnane steroids (C3 S, C8 R, C9 S, C10 R, C12 R, C13 S, C14 S, C17 S): Friedel pairs were averaged before refinement.

The H atoms were placed in idealized positions (C—H = 0.95-0.99Å, O—H = 0.84Å) and thereafter treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I), with displacement ellipsoids at the 50% level (spheres of arbitrary radius for the H atoms).

Crystal data

C26H38O5 F000 = 936
Mr = 430.56 Dx = 1.262 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2446 reflections
a = 7.6523 (9) Å θ = 2.5–26.6º
b = 10.6885 (12) Å µ = 0.09 mm1
c = 27.705 (3) Å T = 100 K
V = 2266.0 (4) Å3 Plate, colorless
Z = 4 0.30 × 0.27 × 0.05 mm

Data collection

Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer 2156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
Monochromator: graphite θmax = 26.7º
T = 100 K θmin = 2.7º
ω and φ scans h = −9→9
Absorption correction: none k = −13→13
9377 measured reflections l = −34→34
2677 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.100   w = 1/[σ2(Fo2) + (0.0516P)2 + 0.3846P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2677 reflections Δρmax = 0.20 e Å3
287 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9957 (2) 0.46948 (17) 0.91649 (6) 0.0407 (5)
H10H 1.0621 0.4080 0.9120 0.061*
O2 0.3082 (2) 0.30783 (16) 0.67021 (6) 0.0341 (4)
H20H 0.2534 0.3094 0.6439 0.051*
O3 0.2237 (2) 0.30076 (18) 0.56873 (6) 0.0436 (5)
O4 0.7859 (2) 0.53134 (15) 0.59363 (6) 0.0305 (4)
O5 0.7923 (2) 0.74167 (16) 0.59427 (6) 0.0369 (4)
C1 0.9214 (3) 0.5459 (3) 0.78456 (8) 0.0302 (5)
H1A 1.0060 0.5598 0.7581 0.036*
H1B 0.8524 0.6236 0.7884 0.036*
C2 1.0228 (3) 0.5220 (3) 0.83123 (9) 0.0342 (6)
H2A 1.1021 0.4498 0.8266 0.041*
H2B 1.0951 0.5962 0.8389 0.041*
C3 0.9010 (4) 0.4954 (2) 0.87292 (8) 0.0338 (6)
H3 0.8282 0.5718 0.8785 0.041*
C4 0.7785 (3) 0.3879 (2) 0.86049 (9) 0.0329 (6)
H4A 0.8471 0.3095 0.8585 0.039*
H4B 0.6921 0.3780 0.8868 0.039*
C5 0.6821 (3) 0.4070 (2) 0.81332 (9) 0.0291 (5)
C6 0.5095 (3) 0.3951 (2) 0.81037 (9) 0.0329 (6)
H6 0.4469 0.3787 0.8393 0.039*
C7 0.4070 (3) 0.4058 (3) 0.76433 (9) 0.0349 (6)
H7A 0.3450 0.4871 0.7638 0.042*
H7B 0.3182 0.3385 0.7632 0.042*
C8 0.5244 (3) 0.3962 (2) 0.71992 (8) 0.0289 (5)
H8 0.5711 0.3089 0.7191 0.035*
C9 0.6822 (3) 0.4840 (2) 0.72681 (8) 0.0273 (5)
H9 0.6346 0.5680 0.7358 0.033*
C10 0.7967 (3) 0.4390 (2) 0.76984 (8) 0.0276 (5)
C11 0.7907 (3) 0.5023 (2) 0.68051 (8) 0.0292 (6)
H11A 0.8714 0.5738 0.6850 0.035*
H11B 0.8622 0.4266 0.6747 0.035*
C12 0.6770 (3) 0.5265 (2) 0.63685 (8) 0.0284 (5)
H12 0.6155 0.6084 0.6409 0.034*
C13 0.5413 (3) 0.4230 (2) 0.62780 (8) 0.0282 (5)
C14 0.4220 (3) 0.4154 (2) 0.67314 (9) 0.0283 (5)
C15 0.3094 (3) 0.5331 (2) 0.66889 (9) 0.0324 (6)
H15A 0.3745 0.6079 0.6798 0.039*
H15B 0.2013 0.5250 0.6883 0.039*
C16 0.2667 (3) 0.5414 (3) 0.61473 (9) 0.0361 (6)
H16A 0.2616 0.6299 0.6044 0.043*
H16B 0.1522 0.5019 0.6080 0.043*
C17 0.4140 (3) 0.4716 (2) 0.58736 (9) 0.0311 (5)
H17 0.4780 0.5329 0.5666 0.037*
C18 0.6315 (3) 0.2983 (2) 0.61696 (9) 0.0324 (6)
H18A 0.6999 0.2722 0.6451 0.049*
H18B 0.7093 0.3083 0.5891 0.049*
H18C 0.5431 0.2347 0.6097 0.049*
C19 0.9048 (3) 0.3220 (2) 0.75633 (9) 0.0306 (6)
H19A 0.9960 0.3454 0.7332 0.046*
H19B 0.8279 0.2592 0.7418 0.046*
H19C 0.9590 0.2873 0.7854 0.046*
C20 0.3456 (3) 0.3660 (2) 0.55563 (9) 0.0336 (6)
C21 0.4373 (4) 0.3454 (3) 0.50851 (9) 0.0427 (7)
H21A 0.5622 0.3317 0.5144 0.064*
H21B 0.4221 0.4191 0.4879 0.064*
H21C 0.3877 0.2719 0.4924 0.064*
C22 0.8251 (3) 0.6433 (2) 0.57417 (9) 0.0296 (5)
C23 0.9065 (3) 0.6338 (2) 0.52566 (9) 0.0301 (6)
C24 0.9321 (4) 0.7573 (3) 0.50011 (11) 0.0379 (6)
H24A 1.0187 0.8073 0.5176 0.057*
H24B 0.8209 0.8026 0.4990 0.057*
H24C 0.9735 0.7420 0.4672 0.057*
C25 0.9463 (3) 0.5220 (3) 0.50738 (9) 0.0344 (6)
H25 0.9221 0.4519 0.5274 0.041*
C26 1.0243 (4) 0.4940 (3) 0.45924 (9) 0.0412 (7)
H26A 1.0654 0.5719 0.4444 0.062*
H26B 0.9359 0.4553 0.4385 0.062*
H26C 1.1230 0.4364 0.4632 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0448 (11) 0.0395 (11) 0.0377 (10) 0.0083 (10) −0.0043 (9) −0.0037 (8)
O2 0.0286 (9) 0.0326 (9) 0.0412 (9) −0.0092 (8) −0.0009 (8) 0.0016 (8)
O3 0.0432 (10) 0.0413 (11) 0.0463 (10) −0.0129 (10) −0.0051 (10) 0.0009 (9)
O4 0.0285 (8) 0.0268 (9) 0.0363 (9) 0.0004 (8) 0.0056 (8) 0.0033 (8)
O5 0.0416 (10) 0.0273 (10) 0.0417 (10) −0.0030 (9) 0.0086 (9) −0.0013 (8)
C1 0.0268 (12) 0.0270 (13) 0.0369 (13) −0.0032 (11) 0.0028 (11) −0.0010 (11)
C2 0.0316 (12) 0.0317 (14) 0.0395 (14) −0.0052 (12) 0.0004 (12) −0.0019 (12)
C3 0.0355 (13) 0.0312 (15) 0.0346 (13) 0.0060 (12) −0.0026 (12) −0.0002 (11)
C4 0.0313 (12) 0.0314 (14) 0.0360 (13) 0.0003 (12) 0.0050 (11) 0.0008 (11)
C5 0.0279 (12) 0.0221 (13) 0.0371 (13) 0.0007 (10) 0.0024 (11) 0.0005 (10)
C6 0.0299 (13) 0.0333 (14) 0.0354 (13) −0.0004 (12) 0.0046 (11) 0.0028 (12)
C7 0.0264 (13) 0.0380 (15) 0.0403 (15) −0.0009 (12) 0.0048 (12) 0.0024 (12)
C8 0.0227 (11) 0.0254 (13) 0.0386 (13) −0.0004 (11) 0.0007 (11) 0.0018 (11)
C9 0.0246 (11) 0.0237 (13) 0.0337 (13) 0.0011 (10) 0.0024 (10) 0.0006 (10)
C10 0.0239 (11) 0.0243 (13) 0.0345 (13) −0.0002 (10) 0.0027 (10) −0.0004 (10)
C11 0.0215 (11) 0.0298 (14) 0.0362 (13) −0.0012 (10) 0.0008 (10) 0.0020 (10)
C12 0.0252 (12) 0.0263 (13) 0.0338 (13) 0.0008 (11) 0.0036 (11) 0.0018 (11)
C13 0.0227 (11) 0.0265 (13) 0.0354 (13) 0.0016 (10) −0.0007 (10) 0.0025 (11)
C14 0.0200 (11) 0.0269 (13) 0.0381 (13) −0.0023 (10) 0.0037 (11) −0.0003 (11)
C15 0.0245 (12) 0.0305 (13) 0.0422 (13) 0.0005 (11) 0.0027 (12) −0.0007 (12)
C16 0.0327 (13) 0.0323 (14) 0.0434 (15) 0.0060 (12) 0.0001 (12) 0.0011 (12)
C17 0.0277 (11) 0.0288 (13) 0.0369 (13) 0.0004 (11) −0.0009 (11) 0.0029 (11)
C18 0.0340 (13) 0.0260 (13) 0.0372 (13) 0.0012 (11) −0.0004 (12) −0.0009 (11)
C19 0.0267 (12) 0.0280 (14) 0.0372 (13) 0.0000 (11) 0.0017 (11) 0.0006 (11)
C20 0.0333 (13) 0.0289 (14) 0.0388 (14) 0.0014 (12) −0.0067 (12) 0.0057 (11)
C21 0.0473 (17) 0.0415 (17) 0.0393 (15) 0.0039 (14) −0.0017 (14) −0.0023 (13)
C22 0.0238 (12) 0.0273 (13) 0.0379 (13) −0.0017 (11) −0.0014 (11) 0.0030 (11)
C23 0.0238 (12) 0.0337 (14) 0.0327 (13) −0.0027 (11) −0.0010 (11) 0.0032 (11)
C24 0.0379 (14) 0.0369 (15) 0.0388 (13) −0.0039 (13) 0.0075 (13) 0.0026 (11)
C25 0.0318 (13) 0.0343 (15) 0.0371 (13) 0.0018 (12) 0.0005 (12) 0.0025 (12)
C26 0.0426 (15) 0.0396 (17) 0.0415 (15) 0.0064 (13) 0.0018 (13) −0.0021 (12)

Geometric parameters (Å, °)

O1—C3 1.435 (3) C11—H11B 0.9900
O1—H10H 0.8400 C12—C13 1.538 (3)
O2—C14 1.445 (3) C12—H12 1.0000
O2—H20H 0.8400 C13—C18 1.530 (3)
O3—C20 1.220 (3) C13—C14 1.555 (3)
O4—C22 1.347 (3) C13—C17 1.573 (3)
O4—C12 1.460 (3) C14—C15 1.529 (3)
O5—C22 1.216 (3) C15—C16 1.538 (3)
C1—C2 1.530 (3) C15—H15A 0.9900
C1—C10 1.543 (3) C15—H15B 0.9900
C1—H1A 0.9900 C16—C17 1.550 (3)
C1—H1B 0.9900 C16—H16A 0.9900
C2—C3 1.511 (3) C16—H16B 0.9900
C2—H2A 0.9900 C17—C20 1.523 (4)
C2—H2B 0.9900 C17—H17 1.0000
C3—C4 1.523 (4) C18—H18A 0.9800
C3—H3 1.0000 C18—H18B 0.9800
C4—C5 1.515 (3) C18—H18C 0.9800
C4—H4A 0.9900 C19—H19A 0.9800
C4—H4B 0.9900 C19—H19B 0.9800
C5—C6 1.329 (3) C19—H19C 0.9800
C5—C10 1.529 (3) C20—C21 1.498 (4)
C6—C7 1.502 (3) C21—H21A 0.9800
C6—H6 0.9500 C21—H21B 0.9800
C7—C8 1.527 (3) C21—H21C 0.9800
C7—H7A 0.9900 C22—C23 1.485 (3)
C7—H7B 0.9900 C23—C25 1.333 (4)
C8—C14 1.528 (3) C23—C24 1.511 (4)
C8—C9 1.542 (3) C24—H24A 0.9800
C8—H8 1.0000 C24—H24B 0.9800
C9—C11 1.540 (3) C24—H24C 0.9800
C9—C10 1.555 (3) C25—C26 1.492 (4)
C9—H9 1.0000 C25—H25 0.9500
C10—C19 1.545 (3) C26—H26A 0.9800
C11—C12 1.512 (3) C26—H26B 0.9800
C11—H11A 0.9900 C26—H26C 0.9800
C3—O1—H10H 109.5 C12—C13—C14 107.59 (19)
C14—O2—H20H 109.5 C18—C13—C17 115.3 (2)
C22—O4—C12 119.14 (18) C12—C13—C17 107.28 (19)
C2—C1—C10 114.4 (2) C14—C13—C17 103.22 (18)
C2—C1—H1A 108.7 O2—C14—C8 104.46 (18)
C10—C1—H1A 108.7 O2—C14—C15 108.09 (18)
C2—C1—H1B 108.7 C8—C14—C15 117.7 (2)
C10—C1—H1B 108.7 O2—C14—C13 110.49 (19)
H1A—C1—H1B 107.6 C8—C14—C13 113.02 (17)
C3—C2—C1 111.38 (19) C15—C14—C13 103.07 (19)
C3—C2—H2A 109.4 C14—C15—C16 104.0 (2)
C1—C2—H2A 109.4 C14—C15—H15A 111.0
C3—C2—H2B 109.4 C16—C15—H15A 111.0
C1—C2—H2B 109.4 C14—C15—H15B 111.0
H2A—C2—H2B 108.0 C16—C15—H15B 111.0
O1—C3—C2 111.6 (2) H15A—C15—H15B 109.0
O1—C3—C4 110.8 (2) C15—C16—C17 107.2 (2)
C2—C3—C4 110.4 (2) C15—C16—H16A 110.3
O1—C3—H3 108.0 C17—C16—H16A 110.3
C2—C3—H3 108.0 C15—C16—H16B 110.3
C4—C3—H3 108.0 C17—C16—H16B 110.3
C5—C4—C3 113.1 (2) H16A—C16—H16B 108.5
C5—C4—H4A 109.0 C20—C17—C16 112.9 (2)
C3—C4—H4A 109.0 C20—C17—C13 112.3 (2)
C5—C4—H4B 109.0 C16—C17—C13 105.12 (19)
C3—C4—H4B 109.0 C20—C17—H17 108.8
H4A—C4—H4B 107.8 C16—C17—H17 108.8
C6—C5—C4 121.6 (2) C13—C17—H17 108.8
C6—C5—C10 122.9 (2) C13—C18—H18A 109.5
C4—C5—C10 115.52 (19) C13—C18—H18B 109.5
C5—C6—C7 124.3 (2) H18A—C18—H18B 109.5
C5—C6—H6 117.8 C13—C18—H18C 109.5
C7—C6—H6 117.8 H18A—C18—H18C 109.5
C6—C7—C8 111.86 (19) H18B—C18—H18C 109.5
C6—C7—H7A 109.2 C10—C19—H19A 109.5
C8—C7—H7A 109.2 C10—C19—H19B 109.5
C6—C7—H7B 109.2 H19A—C19—H19B 109.5
C8—C7—H7B 109.2 C10—C19—H19C 109.5
H7A—C7—H7B 107.9 H19A—C19—H19C 109.5
C7—C8—C14 111.91 (18) H19B—C19—H19C 109.5
C7—C8—C9 108.7 (2) O3—C20—C21 122.2 (2)
C14—C8—C9 115.15 (19) O3—C20—C17 121.0 (2)
C7—C8—H8 106.9 C21—C20—C17 116.8 (2)
C14—C8—H8 106.9 C20—C21—H21A 109.5
C9—C8—H8 106.9 C20—C21—H21B 109.5
C11—C9—C8 113.34 (18) H21A—C21—H21B 109.5
C11—C9—C10 111.96 (18) C20—C21—H21C 109.5
C8—C9—C10 110.35 (19) H21A—C21—H21C 109.5
C11—C9—H9 106.9 H21B—C21—H21C 109.5
C8—C9—H9 106.9 O5—C22—O4 122.6 (2)
C10—C9—H9 106.9 O5—C22—C23 124.1 (2)
C5—C10—C1 108.17 (19) O4—C22—C23 113.2 (2)
C5—C10—C19 108.47 (19) C25—C23—C22 120.1 (2)
C1—C10—C19 109.41 (19) C25—C23—C24 125.1 (2)
C5—C10—C9 110.49 (19) C22—C23—C24 114.7 (2)
C1—C10—C9 108.76 (19) C23—C24—H24A 109.5
C19—C10—C9 111.48 (19) C23—C24—H24B 109.5
C12—C11—C9 112.20 (18) H24A—C24—H24B 109.5
C12—C11—H11A 109.2 C23—C24—H24C 109.5
C9—C11—H11A 109.2 H24A—C24—H24C 109.5
C12—C11—H11B 109.2 H24B—C24—H24C 109.5
C9—C11—H11B 109.2 C23—C25—C26 127.7 (2)
H11A—C11—H11B 107.9 C23—C25—H25 116.2
O4—C12—C11 109.50 (17) C26—C25—H25 116.2
O4—C12—C13 106.10 (18) C25—C26—H26A 109.5
C11—C12—C13 113.3 (2) C25—C26—H26B 109.5
O4—C12—H12 109.3 H26A—C26—H26B 109.5
C11—C12—H12 109.3 C25—C26—H26C 109.5
C13—C12—H12 109.3 H26A—C26—H26C 109.5
C18—C13—C12 110.73 (19) H26B—C26—H26C 109.5
C18—C13—C14 112.2 (2)
C10—C1—C2—C3 −56.4 (3) O4—C12—C13—C17 −69.3 (2)
C1—C2—C3—O1 178.4 (2) C11—C12—C13—C17 170.54 (19)
C1—C2—C3—C4 54.7 (3) C7—C8—C14—O2 −67.2 (2)
O1—C3—C4—C5 −176.92 (19) C9—C8—C14—O2 168.12 (18)
C2—C3—C4—C5 −52.8 (3) C7—C8—C14—C15 52.7 (3)
C3—C4—C5—C6 −128.9 (3) C9—C8—C14—C15 −72.1 (3)
C3—C4—C5—C10 51.8 (3) C7—C8—C14—C13 172.7 (2)
C4—C5—C6—C7 −176.5 (2) C9—C8—C14—C13 48.0 (3)
C10—C5—C6—C7 2.7 (4) C18—C13—C14—O2 −49.4 (2)
C5—C6—C7—C8 15.6 (4) C12—C13—C14—O2 −171.42 (18)
C6—C7—C8—C14 −176.4 (2) C17—C13—C14—O2 75.3 (2)
C6—C7—C8—C9 −48.1 (3) C18—C13—C14—C8 67.3 (3)
C7—C8—C9—C11 −168.6 (2) C12—C13—C14—C8 −54.8 (2)
C14—C8—C9—C11 −42.2 (3) C17—C13—C14—C8 −168.0 (2)
C7—C8—C9—C10 64.9 (2) C18—C13—C14—C15 −164.7 (2)
C14—C8—C9—C10 −168.70 (19) C12—C13—C14—C15 73.3 (2)
C6—C5—C10—C1 131.8 (3) C17—C13—C14—C15 −39.9 (2)
C4—C5—C10—C1 −48.9 (3) O2—C14—C15—C16 −76.7 (2)
C6—C5—C10—C19 −109.6 (3) C8—C14—C15—C16 165.4 (2)
C4—C5—C10—C19 69.7 (3) C13—C14—C15—C16 40.3 (2)
C6—C5—C10—C9 12.9 (3) C14—C15—C16—C17 −25.1 (3)
C4—C5—C10—C9 −167.9 (2) C15—C16—C17—C20 122.9 (2)
C2—C1—C10—C5 51.3 (3) C15—C16—C17—C13 0.2 (3)
C2—C1—C10—C19 −66.7 (3) C18—C13—C17—C20 23.8 (3)
C2—C1—C10—C9 171.30 (19) C12—C13—C17—C20 147.6 (2)
C11—C9—C10—C5 −173.29 (19) C14—C13—C17—C20 −98.9 (2)
C8—C9—C10—C5 −46.0 (2) C18—C13—C17—C16 147.0 (2)
C11—C9—C10—C1 68.1 (2) C12—C13—C17—C16 −89.2 (2)
C8—C9—C10—C1 −164.62 (18) C14—C13—C17—C16 24.2 (2)
C11—C9—C10—C19 −52.6 (3) C16—C17—C20—O3 −37.5 (3)
C8—C9—C10—C19 74.7 (2) C13—C17—C20—O3 81.1 (3)
C8—C9—C11—C12 45.5 (3) C16—C17—C20—C21 143.6 (2)
C10—C9—C11—C12 171.1 (2) C13—C17—C20—C21 −97.7 (2)
C22—O4—C12—C11 −102.8 (2) C12—O4—C22—O5 9.5 (3)
C22—O4—C12—C13 134.6 (2) C12—O4—C22—C23 −168.83 (18)
C9—C11—C12—O4 −174.75 (19) O5—C22—C23—C25 176.5 (3)
C9—C11—C12—C13 −56.5 (3) O4—C22—C23—C25 −5.2 (3)
O4—C12—C13—C18 57.3 (2) O5—C22—C23—C24 −5.4 (4)
C11—C12—C13—C18 −62.9 (2) O4—C22—C23—C24 172.9 (2)
O4—C12—C13—C14 −179.76 (17) C22—C23—C25—C26 178.5 (2)
C11—C12—C13—C14 60.1 (2) C24—C23—C25—C26 0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H10H···O5i 0.84 2.11 2.941 (3) 173
O2—H20H···O3 0.84 2.10 2.886 (2) 156

Symmetry codes: (i) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2752).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Consumer Reports (2006). 71, p. 49. New York: Consumers Union.
  4. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. MacLean, D. B. & Luo, L.-G. (2004). Brain Res.1020, 1–11. [DOI] [PubMed]
  7. Muller, B. & Albers, F. (2002). Illustrated Handbook of Succulent Plants, 1st ed., pp. 142–146. Berlin: Springer-Verlag.
  8. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  9. Nutrition Business Journal (2007). 12, pp. 12–14. New York: Penton Media.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Pawar, R. S., Shukla, Y. J., Khan, S. I., Avula, B. & Khan, I. A. (2007). Steroids, 72, 524–534. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Shin, W., Shim, J. H., Woo, W. S. & Kang, S. S. (1990). Acta Cryst. C46, 1069–1071.
  14. Van Heerden, F. R., Vleggaar, R., Horak, R. M., Learmonth, R. A., Maharaj, V. & Whittal, R. D. (1998). (CSIR, S. Afr.). International Patent, 98-GB1100 9846243.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022368/hb2752sup1.cif

e-64-o1643-sup1.cif (25.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022368/hb2752Isup2.hkl

e-64-o1643-Isup2.hkl (131.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES