Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):o1615–o1616. doi: 10.1107/S1600536808023386

(E)-1,2-Bis(4-methyl­phen­yl)ethane-1,2-dione

Hoong-Kun Fun a,*, Reza Kia a,
PMCID: PMC2962226  PMID: 21203307

Abstract

In the mol­ecule of the title compound, C16H14O2, a substituted benzil, the dicarbonyl unit has an s-trans conformation. This conformation is substanti­ated by the O—C—C—O torsion angle of 108.16 (15)°. The dihedral angle between the two aromatic rings is 72.00 (6)°. In the crystal structure, neighbouring mol­ecules are linked together by weak inter­molecular C—H⋯O hydrogen bonds and weak inter­molecular C—H⋯π inter­actions. In addition, the crystal structure is further stabilized by inter­molecular π–π inter­actions with centroid–centroid distances in the range 3.6000 (8)–3.8341 (8) Å.

Related literature

For bond-length data, see Allen et al. (1987). For carbonyl–carbonyl interactions, see Allen et al. (1998). For related structures and applications, see, for example: Fun & Kia, (2008); Kaftory & Rubin, (1983); Frey et al. (1995); Crowley et al. (1983); More et al. (1987); Brown et al. (1965); Gabe et al. (1981); Kimura et al. (1979); Stevens & Dubois (1962); Shimizu & Bartlett, (1976); Rubin (1978).graphic file with name e-64-o1615-scheme1.jpg

Experimental

Crystal data

  • C16H14O2

  • M r = 238.27

  • Monoclinic, Inline graphic

  • a = 6.5658 (1) Å

  • b = 7.0916 (1) Å

  • c = 26.5958 (5) Å

  • β = 96.473 (1)°

  • V = 1230.46 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.30 × 0.22 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.975, T max = 0.993

  • 15023 measured reflections

  • 3562 independent reflections

  • 2473 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.129

  • S = 1.04

  • 3562 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023386/at2603sup1.cif

e-64-o1615-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023386/at2603Isup2.hkl

e-64-o1615-Isup2.hkl (174.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected distances (Å).

Cg1 is the centroid of the C1–C6 benzene ring.

C7—C8 1.5350 (19)
O1⋯O2 3.1702 (15)
Cg1⋯Cg1i 3.6000 (8)
Cg1⋯Cg1ii 3.8341 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1iii 0.93 2.44 3.2573 (18) 146
C14—H14ACg2iv 0.93 2.94 3.6105 (15) 130

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and RK thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Investigation of the photophysical properties of the α-dicarbonyls has focused on the intramolecular carbonyl group electronic interaction as a function of their geometrical relationship. As in previous extensive studies of the photochemistry (Stevens & Dubois, 1962; Shimizu & Bartlett, 1976) of these compounds, biacetyl and benzil were the exclusive experimental vehicles for photophysical study. The structure of vicinal di- and polycarbonyl compounds have been of interest for many years (Rubin, 1978; Crowley et al., 1983; Kaftory et al., 1983; Frey et al., 1995; Kimura et al., 1979). Only a limited amount of data has been gathered from solid-state configurations such as in single crystals or as inclusion dopants in host crystals.

In the title compound (I) (Fig.1), bond lengths, bond angles, and torsion angles of the dicarbonyl unit deviate significantly from normal values (Allen et al., 1987) in order to minimize the repulsive interactions resulting from juxtaposition of dipolar carbonyl groups (Allen et al., 1987). The C7–C8 bond distance connecting the carbonyl units is longer than those in normally sp2sp2 single bonds, such as in butadiene. This is probably the result of decreasing the unfavourable vicinal dipole-dipole interactions. The dicarbonyl unit has s-trans conformation as can be indicated by the torsion angles of O1–C7–C6–C1, and O2–C8–C9–C10 being 169.55 (13) and 179.45 (14)°, respectively. This conformation is substantiated by the torsion angle of O–C–C–O, being 108.16 (15)°. The overal effect is to maximize the distance between the two electronegative oxygen atoms [O1···O2 = 3.1702 (15) Å] and to allow orbital overlap of the dione with the π system of the benzene rings. The dihedral angle between two phenyl rings is 64.74 (5)°. In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H···O hydrogen bond and weak intermolecular C—H···π interaction. The packing mode (Fig. 2) tend to be dominated by van der Wwaals close packing considerations and the preference for aligning the substituted phenyl rings parallel to each other along the a axis at about 3.6000 (8) – 3.8341 (8) Å.

Experimental

The synthetic method has been described earlier (Frey et al., 1995). Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.

Refinement

All of the hydrogen atoms were positioned geometrically and refined using a riding model with isotropic thermal parameters 1.2 or 1.5 times that of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing, showing parallel aligning of the benzene rings along the a-axis, and stacking of the molecules down the b-axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C16H14O2 F000 = 504
Mr = 238.27 Dx = 1.286 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2861 reflections
a = 6.5658 (1) Å θ = 3.0–29.0º
b = 7.0916 (1) Å µ = 0.08 mm1
c = 26.5958 (5) Å T = 100.0 (1) K
β = 96.473 (1)º Block, colourless
V = 1230.46 (3) Å3 0.30 × 0.22 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3562 independent reflections
Radiation source: fine-focus sealed tube 2473 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.046
T = 100.0(1) K θmax = 30.0º
φ and ω scans θmin = 3.0º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −9→9
Tmin = 0.975, Tmax = 0.993 k = −9→9
15023 measured reflections l = −37→37

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.129   w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2688P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3562 reflections Δρmax = 0.34 e Å3
165 parameters Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.78303 (16) 0.85817 (16) 0.10574 (4) 0.0265 (3)
O2 0.52337 (16) 0.56364 (16) 0.16163 (4) 0.0284 (3)
C1 0.7563 (2) 0.3603 (2) 0.07576 (5) 0.0216 (3)
H1A 0.7585 0.3142 0.1086 0.026*
C2 0.7544 (2) 0.2362 (2) 0.03573 (5) 0.0228 (3)
H2A 0.7572 0.1071 0.0419 0.027*
C3 0.7484 (2) 0.3022 (2) −0.01380 (5) 0.0211 (3)
C4 0.7468 (2) 0.4963 (2) −0.02211 (5) 0.0206 (3)
H4A 0.7422 0.5422 −0.0550 0.025*
C5 0.7519 (2) 0.6211 (2) 0.01774 (5) 0.0202 (3)
H5A 0.7533 0.7502 0.0117 0.024*
C6 0.7550 (2) 0.5541 (2) 0.06734 (5) 0.0193 (3)
C7 0.7559 (2) 0.6884 (2) 0.10961 (5) 0.0200 (3)
C8 0.7002 (2) 0.6162 (2) 0.16073 (5) 0.0210 (3)
C9 0.8525 (2) 0.6278 (2) 0.20558 (5) 0.0197 (3)
C10 1.0524 (2) 0.6905 (2) 0.20242 (5) 0.0216 (3)
H10A 1.0934 0.7207 0.1710 0.026*
C11 1.1896 (2) 0.7079 (2) 0.24546 (5) 0.0234 (3)
H11A 1.3223 0.7495 0.2428 0.028*
C12 1.1314 (2) 0.6638 (2) 0.29296 (5) 0.0233 (3)
C13 0.9340 (2) 0.5956 (2) 0.29583 (5) 0.0237 (3)
H13A 0.8949 0.5614 0.3271 0.028*
C14 0.7955 (2) 0.5781 (2) 0.25295 (5) 0.0219 (3)
H14A 0.6641 0.5331 0.2556 0.026*
C15 0.7434 (2) 0.1652 (2) −0.05715 (6) 0.0273 (4)
H15A 0.7075 0.2309 −0.0885 0.041*
H15B 0.6436 0.0690 −0.0533 0.041*
H15C 0.8761 0.1084 −0.0573 0.041*
C16 1.2805 (3) 0.6890 (3) 0.33977 (6) 0.0316 (4)
H16A 1.2128 0.6629 0.3692 0.047*
H16B 1.3302 0.8164 0.3413 0.047*
H16C 1.3935 0.6038 0.3387 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0327 (6) 0.0224 (6) 0.0251 (5) −0.0009 (5) 0.0062 (4) 0.0025 (5)
O2 0.0246 (5) 0.0343 (7) 0.0271 (6) −0.0046 (5) 0.0065 (4) 0.0017 (5)
C1 0.0216 (7) 0.0247 (8) 0.0185 (6) 0.0009 (6) 0.0020 (5) 0.0042 (6)
C2 0.0222 (7) 0.0208 (8) 0.0254 (7) 0.0003 (6) 0.0027 (6) 0.0019 (6)
C3 0.0152 (6) 0.0268 (8) 0.0213 (7) 0.0002 (6) 0.0028 (5) −0.0007 (6)
C4 0.0160 (6) 0.0282 (8) 0.0178 (6) 0.0001 (6) 0.0020 (5) 0.0043 (6)
C5 0.0171 (6) 0.0221 (8) 0.0215 (7) 0.0012 (6) 0.0028 (5) 0.0054 (6)
C6 0.0157 (6) 0.0233 (8) 0.0189 (6) 0.0003 (6) 0.0027 (5) 0.0021 (6)
C7 0.0171 (6) 0.0230 (8) 0.0202 (7) 0.0010 (6) 0.0030 (5) 0.0031 (6)
C8 0.0245 (7) 0.0186 (8) 0.0205 (6) −0.0001 (6) 0.0060 (6) −0.0002 (6)
C9 0.0245 (7) 0.0154 (7) 0.0199 (6) 0.0012 (6) 0.0059 (5) 0.0001 (6)
C10 0.0257 (7) 0.0211 (8) 0.0192 (6) 0.0011 (6) 0.0073 (6) 0.0022 (6)
C11 0.0218 (7) 0.0216 (8) 0.0272 (7) −0.0003 (6) 0.0041 (6) 0.0024 (6)
C12 0.0308 (8) 0.0161 (7) 0.0226 (7) 0.0027 (6) 0.0007 (6) 0.0013 (6)
C13 0.0339 (8) 0.0189 (8) 0.0195 (7) 0.0026 (7) 0.0081 (6) 0.0017 (6)
C14 0.0242 (7) 0.0191 (8) 0.0237 (7) −0.0004 (6) 0.0087 (6) 0.0005 (6)
C15 0.0258 (8) 0.0311 (9) 0.0251 (7) −0.0013 (7) 0.0037 (6) −0.0040 (7)
C16 0.0381 (9) 0.0292 (9) 0.0261 (8) −0.0001 (8) −0.0032 (7) 0.0022 (7)

Geometric parameters (Å, °)

O1—C7 1.2231 (18) C9—C14 1.3992 (18)
O2—C8 1.2221 (17) C10—C11 1.380 (2)
C1—C2 1.380 (2) C10—H10A 0.9300
C1—C6 1.393 (2) C11—C12 1.3960 (19)
C1—H1A 0.9300 C11—H11A 0.9300
C2—C3 1.394 (2) C12—C13 1.393 (2)
C2—H2A 0.9300 C12—C16 1.505 (2)
C3—C4 1.394 (2) C13—C14 1.382 (2)
C3—C15 1.505 (2) C13—H13A 0.9300
C4—C5 1.378 (2) C14—H14A 0.9300
C4—H4A 0.9300 C15—H15A 0.9600
C5—C6 1.3999 (18) C15—H15B 0.9600
C5—H5A 0.9300 C15—H15C 0.9600
C6—C7 1.473 (2) C16—H16A 0.9600
C7—C8 1.5350 (19) C16—H16B 0.9600
C8—C9 1.470 (2) C16—H16C 0.9600
C9—C10 1.398 (2)
O1···O2 3.1702 (15) Cg1···Cg1ii 3.8341 (8)
Cg1···Cg1i 3.6000 (8)
C2—C1—C6 120.39 (13) C11—C10—C9 120.56 (13)
C2—C1—H1A 119.8 C11—C10—H10A 119.7
C6—C1—H1A 119.8 C9—C10—H10A 119.7
C1—C2—C3 120.77 (15) C10—C11—C12 120.72 (14)
C1—C2—H2A 119.6 C10—C11—H11A 119.6
C3—C2—H2A 119.6 C12—C11—H11A 119.6
C4—C3—C2 118.69 (13) C13—C12—C11 118.59 (13)
C4—C3—C15 121.12 (13) C13—C12—C16 121.20 (13)
C2—C3—C15 120.19 (14) C11—C12—C16 120.21 (14)
C5—C4—C3 120.87 (13) C14—C13—C12 121.06 (13)
C5—C4—H4A 119.6 C14—C13—H13A 119.5
C3—C4—H4A 119.6 C12—C13—H13A 119.5
C4—C5—C6 120.22 (14) C13—C14—C9 120.15 (13)
C4—C5—H5A 119.9 C13—C14—H14A 119.9
C6—C5—H5A 119.9 C9—C14—H14A 119.9
C1—C6—C5 119.05 (13) C3—C15—H15A 109.5
C1—C6—C7 121.06 (12) C3—C15—H15B 109.5
C5—C6—C7 119.89 (13) H15A—C15—H15B 109.5
O1—C7—C6 124.07 (12) C3—C15—H15C 109.5
O1—C7—C8 117.04 (13) H15A—C15—H15C 109.5
C6—C7—C8 118.65 (13) H15B—C15—H15C 109.5
O2—C8—C9 124.19 (12) C12—C16—H16A 109.5
O2—C8—C7 116.15 (12) C12—C16—H16B 109.5
C9—C8—C7 119.47 (12) H16A—C16—H16B 109.5
C10—C9—C14 118.86 (13) C12—C16—H16C 109.5
C10—C9—C8 121.78 (12) H16A—C16—H16C 109.5
C14—C9—C8 119.35 (13) H16B—C16—H16C 109.5
C6—C1—C2—C3 −0.9 (2) O1—C7—C8—C9 −67.01 (18)
C1—C2—C3—C4 0.8 (2) C6—C7—C8—C9 118.41 (15)
C1—C2—C3—C15 −179.15 (13) O2—C8—C9—C10 −179.46 (15)
C2—C3—C4—C5 0.3 (2) C7—C8—C9—C10 −4.7 (2)
C15—C3—C4—C5 −179.83 (13) O2—C8—C9—C14 −0.6 (2)
C3—C4—C5—C6 −1.2 (2) C7—C8—C9—C14 174.18 (13)
C2—C1—C6—C5 0.0 (2) C14—C9—C10—C11 −1.8 (2)
C2—C1—C6—C7 179.66 (13) C8—C9—C10—C11 177.11 (14)
C4—C5—C6—C1 1.0 (2) C9—C10—C11—C12 −0.1 (2)
C4—C5—C6—C7 −178.64 (12) C10—C11—C12—C13 2.2 (2)
C1—C6—C7—O1 169.54 (14) C10—C11—C12—C16 −178.16 (14)
C5—C6—C7—O1 −10.8 (2) C11—C12—C13—C14 −2.3 (2)
C1—C6—C7—C8 −16.28 (19) C16—C12—C13—C14 178.02 (14)
C5—C6—C7—C8 163.39 (12) C12—C13—C14—C9 0.4 (2)
O1—C7—C8—O2 108.17 (16) C10—C9—C14—C13 1.6 (2)
C6—C7—C8—O2 −66.42 (18) C8—C9—C14—C13 −177.28 (13)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1iii 0.93 2.44 3.2573 (18) 146
C14—H14A···Cg2iv 0.93 2.94 3.6105 (15) 130

Symmetry codes: (iii) x, y−1, z; (iv) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2603).

References

  1. Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Brown, C. J. & Sadanaga, R. (1965). Acta Cryst.18, 158–164.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Crowley, J. I., Balanson, R. D. & Mayerle, J. J. (1983). J. Am. Chem. Soc 105, 6416–6422.
  6. Frey, J., Faraggi, E., Rappoport, Z. & Kaftory, M. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1745–1748.
  7. Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1617. [DOI] [PMC free article] [PubMed]
  8. Gabe, E. J., Le Page, Y., Lee, F. L. & Barclay, L. R. C. (1981). Acta Cryst. B37, 197–200.
  9. Kaftory, M. & Rubin, M. B. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 149–154.
  10. Kimura, M., McCluney, R. E. & Watson, W. H. (1979). Acta Cryst. B35, 483–484.
  11. More, M., Odou, G. & Lefebvre, J. (1987). Acta Cryst. B43, 398–405.
  12. Rubin, M. B. (1978). Chem. Rev.78, 1121–1164.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shimizu, N. & Bartlett, P. D. (1976). J. Am. Chem. Soc.98, 4193–4200.
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  16. Stevens, B. & Dubois, J. T. (1962). J. Chem. Soc. pp. 2813–2815.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023386/at2603sup1.cif

e-64-o1615-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023386/at2603Isup2.hkl

e-64-o1615-Isup2.hkl (174.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES