Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):o1647. doi: 10.1107/S1600536808023751

(E,E)-N,N′-Bis­(4-methoxy­benzyl­idene)cyclo­hexane-1,2-diamine

Guo-Xi Wang a,*
PMCID: PMC2962231  PMID: 21203334

Abstract

In the title compound, C22H26N2O2, the meth­oxy and the benzyl­idene groups are essentially coplanar, and the cyclo­hexane ring has a chair conformation. The two halves of the mol­ecule are related by a twofold rotation. The crystal structure is stabilized only by van der Waals inter­actions.

Related literature

For the chemistry of Schiff base derivatives, see: Negm & Zaki (2008); Feng et al. (2008); Lee & Do (2007).graphic file with name e-64-o1647-scheme1.jpg

Experimental

Crystal data

  • C22H26N2O2

  • M r = 350.45

  • Orthorhombic, Inline graphic

  • a = 19.674 (3) Å

  • b = 5.4097 (9) Å

  • c = 18.662 (3) Å

  • V = 1986.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.35 × 0.30 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.978, T max = 0.985

  • 18603 measured reflections

  • 2262 independent reflections

  • 1588 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.154

  • S = 1.12

  • 2262 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL .

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808023751/wk2089sup1.cif

e-64-o1647-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023751/wk2089Isup2.hkl

e-64-o1647-Isup2.hkl (111.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the past five years, we have focused on the chemistry of schiff-base derivatives because of their biological behaviors and their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Negm & Zaki, 2008; Feng et al. 2008; Lee & Do, 2007). We report here the crystal structure of the title compound, (N1E,N2E)-N1,N2-bis(4-methoxybenzylidene)cyclohexane-1,2-diamine.

In the title compound (Fig.1), there is a rotation axis bisecting the molecule through the cyclohexane ring. The methoxy and the benzylidene groups are essentially coplanar, and the cyclohexane-1,2-diamine group is in the chair form. The C4=N1 bond length of 1.249 (2) Å is consistent with the value for a double bond. The crystal structure is stabilized only by van der Waals interactions.

Experimental

rac-Diaminocyclohexane (1.20 g, 10.5 mmol) and p-anisaldehyde (1.36 g, 10.0 mmol) were dissolved in ethanol (20 mL) under magnetic stirring. The mixture was heated to reflux for 12 h. After cooled to room temperature, the resulting content was put to a refrigerator to stand over night. Then, the precipitate was filtered off and recrystallized from ethanol affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), C–H = 0.98 Å(methine), 0.97 Å(methylene), C–H = 0.96 Å(methyl), with Uiso(H) =1.2Ueq(C except methyl C) and Uiso(H) =1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom numbering scheme, symmetry related atoms, (-x+1/2, -y+1/2, z) denoted by A. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C22H26N2O2 F000 = 752
Mr = 350.45 Dx = 1.172 Mg m3
Orthorhombic, Pccn Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 3131 reflections
a = 19.674 (3) Å θ = 3.0–27.4º
b = 5.4097 (9) Å µ = 0.08 mm1
c = 18.662 (3) Å T = 298 (2) K
V = 1986.2 (6) Å3 Block, colorless
Z = 4 0.35 × 0.30 × 0.20 mm

Data collection

Rigaku Mercury2 diffractometer 2262 independent reflections
Radiation source: fine-focus sealed tube 1588 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.060
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 298(2) K θmin = 3.0º
ω scans h = −25→25
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −7→7
Tmin = 0.978, Tmax = 0.985 l = −24→24
18603 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.154   w = 1/[σ2(Fo2) + (0.0572P)2 + 0.4317P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2262 reflections Δρmax = 0.13 e Å3
118 parameters Δρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47992 (8) 0.4625 (3) 0.41000 (8) 0.0713 (5)
N1 0.32205 (8) 0.3062 (3) 0.11039 (9) 0.0558 (5)
C5 0.36446 (9) 0.4561 (4) 0.22382 (10) 0.0493 (5)
C2 0.32123 (10) 0.3262 (5) −0.02019 (11) 0.0629 (6)
H2A 0.3454 0.1699 −0.0204 0.075*
H2B 0.3547 0.4577 −0.0203 0.075*
C7 0.45135 (10) 0.2643 (4) 0.29659 (11) 0.0535 (5)
H7 0.4827 0.1380 0.3034 0.064*
C4 0.32303 (10) 0.4677 (4) 0.15823 (10) 0.0553 (5)
H4 0.2955 0.6057 0.1519 0.066*
C8 0.44380 (10) 0.4485 (4) 0.34762 (10) 0.0513 (5)
C6 0.41180 (10) 0.2704 (4) 0.23553 (10) 0.0539 (5)
H6 0.4170 0.1467 0.2014 0.065*
C3 0.27888 (9) 0.3439 (4) 0.04791 (10) 0.0532 (5)
H3 0.2592 0.5101 0.0506 0.064*
C10 0.35804 (10) 0.6392 (4) 0.27558 (11) 0.0591 (5)
H10 0.3270 0.7666 0.2688 0.071*
C1 0.27826 (11) 0.3452 (4) −0.08769 (11) 0.0636 (6)
H1B 0.2587 0.5095 −0.0908 0.076*
H1A 0.3069 0.3204 −0.1294 0.076*
C11 0.52945 (14) 0.2748 (6) 0.42442 (13) 0.0871 (8)
H11A 0.5509 0.3076 0.4696 0.131*
H11B 0.5631 0.2746 0.3872 0.131*
H11C 0.5075 0.1164 0.4262 0.131*
C9 0.39688 (10) 0.6346 (4) 0.33659 (11) 0.0595 (6)
H9 0.3916 0.7580 0.3708 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0718 (9) 0.0912 (12) 0.0509 (9) 0.0097 (9) −0.0096 (7) −0.0121 (8)
N1 0.0534 (9) 0.0608 (11) 0.0532 (10) 0.0022 (8) −0.0042 (8) −0.0036 (8)
C5 0.0448 (9) 0.0533 (11) 0.0497 (11) −0.0015 (9) 0.0020 (8) −0.0005 (9)
C2 0.0514 (11) 0.0790 (16) 0.0583 (13) −0.0074 (10) 0.0038 (10) 0.0038 (11)
C7 0.0538 (11) 0.0521 (12) 0.0544 (11) 0.0079 (9) 0.0001 (10) −0.0009 (9)
C4 0.0490 (11) 0.0572 (12) 0.0597 (13) 0.0051 (9) −0.0020 (9) 0.0010 (10)
C8 0.0510 (10) 0.0593 (12) 0.0436 (10) −0.0043 (9) 0.0035 (9) −0.0025 (9)
C6 0.0574 (11) 0.0524 (12) 0.0518 (11) 0.0006 (9) 0.0032 (10) −0.0101 (9)
C3 0.0528 (11) 0.0543 (12) 0.0524 (11) 0.0028 (9) −0.0044 (9) 0.0016 (9)
C10 0.0572 (12) 0.0541 (12) 0.0661 (13) 0.0088 (10) 0.0001 (10) −0.0060 (10)
C1 0.0680 (13) 0.0694 (14) 0.0535 (12) −0.0003 (11) 0.0036 (10) 0.0037 (10)
C11 0.0886 (17) 0.110 (2) 0.0625 (15) 0.0236 (16) −0.0193 (13) 0.0001 (14)
C9 0.0628 (12) 0.0580 (13) 0.0578 (13) 0.0034 (10) 0.0017 (10) −0.0148 (10)

Geometric parameters (Å, °)

O1—C8 1.366 (2) C4—H4 0.9300
O1—C11 1.433 (3) C8—C9 1.381 (3)
N1—C4 1.249 (2) C6—H6 0.9300
N1—C3 1.457 (2) C3—C3i 1.525 (4)
C5—C10 1.389 (3) C3—H3 0.9800
C5—C6 1.387 (3) C10—C9 1.371 (3)
C5—C4 1.472 (3) C10—H10 0.9300
C2—C3 1.523 (3) C1—C1i 1.516 (4)
C2—C1 1.521 (3) C1—H1B 0.9700
C2—H2A 0.9700 C1—H1A 0.9700
C2—H2B 0.9700 C11—H11A 0.9600
C7—C6 1.380 (3) C11—H11B 0.9600
C7—C8 1.386 (3) C11—H11C 0.9600
C7—H7 0.9300 C9—H9 0.9300
C8—O1—C11 118.35 (17) N1—C3—C2 109.88 (15)
C4—N1—C3 118.88 (17) C3i—C3—C2 111.46 (14)
C10—C5—C6 117.90 (18) N1—C3—H3 108.5
C10—C5—C4 119.83 (18) C3i—C3—H3 108.5
C6—C5—C4 122.25 (18) C2—C3—H3 108.5
C3—C2—C1 112.52 (16) C9—C10—C5 120.92 (19)
C3—C2—H2A 109.1 C9—C10—H10 119.5
C1—C2—H2A 109.1 C5—C10—H10 119.5
C3—C2—H2B 109.1 C1i—C1—C2 111.22 (15)
C1—C2—H2B 109.1 C1i—C1—H1B 109.4
H2A—C2—H2B 107.8 C2—C1—H1B 109.4
C6—C7—C8 119.32 (19) C1i—C1—H1A 109.4
C6—C7—H7 120.3 C2—C1—H1A 109.4
C8—C7—H7 120.3 H1B—C1—H1A 108.0
N1—C4—C5 124.96 (19) O1—C11—H11A 109.5
N1—C4—H4 117.5 O1—C11—H11B 109.5
C5—C4—H4 117.5 H11A—C11—H11B 109.5
O1—C8—C9 115.75 (17) O1—C11—H11C 109.5
O1—C8—C7 124.70 (18) H11A—C11—H11C 109.5
C9—C8—C7 119.55 (18) H11B—C11—H11C 109.5
C7—C6—C5 121.71 (18) C8—C9—C10 120.61 (19)
C7—C6—H6 119.1 C8—C9—H9 119.7
C5—C6—H6 119.1 C10—C9—H9 119.7
N1—C3—C3i 109.94 (14)
C3—N1—C4—C5 −179.41 (17) C4—N1—C3—C3i −112.3 (2)
C10—C5—C4—N1 −175.8 (2) C4—N1—C3—C2 124.6 (2)
C6—C5—C4—N1 6.0 (3) C1—C2—C3—N1 175.80 (18)
C11—O1—C8—C9 −179.9 (2) C1—C2—C3—C3i 53.7 (3)
C11—O1—C8—C7 0.1 (3) C6—C5—C10—C9 −0.6 (3)
C6—C7—C8—O1 −179.97 (18) C4—C5—C10—C9 −178.92 (19)
C6—C7—C8—C9 0.0 (3) C3—C2—C1—C1i −54.7 (3)
C8—C7—C6—C5 −0.1 (3) O1—C8—C9—C10 179.73 (18)
C10—C5—C6—C7 0.4 (3) C7—C8—C9—C10 −0.3 (3)
C4—C5—C6—C7 178.64 (18) C5—C10—C9—C8 0.6 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2089).

References

  1. Feng, Y., Wang, C., Xu, J., Xu, L., Liao, D., Yan, S. & Jiang, Z. (2008). Inorg. Chem. Commun.11, 549–552.
  2. Lee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem.46, 7701–7703. [DOI] [PubMed]
  3. Negm, N.-A. & Zaki, M.-F. (2008). Colloid Surf. B, 64, 179–183. [DOI] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808023751/wk2089sup1.cif

e-64-o1647-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023751/wk2089Isup2.hkl

e-64-o1647-Isup2.hkl (111.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES