Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):o1637. doi: 10.1107/S1600536808019934

2-Meth­oxy-N-[5-(2-methoxy­phen­yl)-1,3,4-thia­diazol-2-yl]benzamide hemi­hydrate

Li-he Yin a, Rong Wan a,*, Feng Han a, Bin Wang a, Jin-tang Wang a
PMCID: PMC2962244  PMID: 21203326

Abstract

In the mol­ecule of the title compound, C17H15N3O3S·0.5H2O, the thia­diazole ring is oriented with respect to the two 2-methoxy­phenyl rings at dihedral angles of 3.70 (3) and 1.74 (2)°. An intra­molecular N—H⋯O hydrogen bond results in the formation of a planar six-membered ring, which is oriented with respect to the thia­diazole ring at a dihedral angle of 1.33 (3)°. Thus, all of the rings are nearly coplanar. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999).graphic file with name e-64-o1637-scheme1.jpg

Experimental

Crystal data

  • C17H15N3O3S·0.5H2O

  • M r = 350.40

  • Monoclinic, Inline graphic

  • a = 29.950 (6) Å

  • b = 14.561 (3) Å

  • c = 7.6520 (15) Å

  • β = 94.78 (3)°

  • V = 3325.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.937, T max = 0.989

  • 6340 measured reflections

  • 3003 independent reflections

  • 1602 reflections with I > 2σ(I)

  • R int = 0.060

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.240

  • S = 1.04

  • 3003 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019934/hk2483sup1.cif

e-64-o1637-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019934/hk2483Isup2.hkl

e-64-o1637-Isup2.hkl (147.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3 0.86 2.04 2.706 (5) 134
O4—H4⋯N1i 0.85 2.24 2.796 (6) 123
C14—H14A⋯O2ii 0.93 2.49 3.316 (6) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Professor Hua-qin Wang, Analysis Centre, Nanjing University, for providing diffractometer time.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C2-C7), B (S/N1/N2/C8/C9) and C (C12-C17) are, of course, planar. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered planar ring D (N3/H3A/O3/C10/C12/C13). The dihedral angles between the rings are A/B = 3.70 (3)°, A/C = 2.81 (3)°, A/D = 2.45 (3)°, B/C = 1.74 (2)°, B/D = 1.33 (3)° and C/D = 0.90 (3)°. So, all of the rings are nearly coplanar.

In the crystal structure, intermolecular O-H···N and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For preparation of the title compound, a solution of 5-(2-methoxyphenyl) -1,3,4-thiadiazol-2-amine (5 mmol) in pyridine (50 ml) was cooled to 273 K. To this solution, 2-methoxybenzoyl chloride (5 mmol) was added via a drop funnel over period of 30 min. The mixture was stirred at 273 K for 1 h, raised to room temperature and reacted for 1 h. The pyridine was distilled and the solid residue was recrystallized from ethanol to give the title compound (m.p. 513-514 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement

H atoms were positioned geometrically, with O-H = 0.85 Å (for H2O), N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H15N3O3S·0.5H2O F000 = 1464
Mr = 350.40 Dx = 1.400 Mg m3
Monoclinic, C2/c Melting point = 513–514 K
Hall symbol: -C 2yc Mo Kα radiation λ = 0.71073 Å
a = 29.950 (6) Å Cell parameters from 25 reflections
b = 14.561 (3) Å θ = 9–12º
c = 7.6520 (15) Å µ = 0.22 mm1
β = 94.78 (3)º T = 298 (2) K
V = 3325.4 (12) Å3 Block, colorless
Z = 8 0.30 × 0.10 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.061
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 1.4º
T = 298(2) K h = −35→35
ω/2θ scans k = 0→17
Absorption correction: ψ scan(North et al., 1968) l = 0→9
Tmin = 0.937, Tmax = 0.989 3 standard reflections
6340 measured reflections every 120 min
3003 independent reflections intensity decay: none
1602 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079 H-atom parameters constrained
wR(F2) = 0.241   w = 1/[σ2(Fo2) + (0.1018P)2 + 4.918P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3003 reflections Δρmax = 0.57 e Å3
222 parameters Δρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.14065 (4) 0.20610 (9) 0.03340 (17) 0.0643 (5)
O1 0.16810 (11) 0.1136 (2) −0.2572 (5) 0.0694 (10)
O2 0.19106 (10) 0.2584 (3) 0.3483 (5) 0.0761 (11)
O3 0.09246 (10) 0.3994 (2) 0.5803 (4) 0.0623 (9)
O4 1.0000 0.3791 (4) 0.2500 0.139 (3)
H4 0.9969 0.3526 0.3472 0.167*
N1 0.06625 (14) 0.2824 (4) 0.0904 (6) 0.0805 (14)
N2 0.06140 (12) 0.2445 (3) −0.0693 (5) 0.0622 (11)
N3 0.11780 (9) 0.3022 (2) 0.3039 (5) 0.0430 (8)
H3A 0.0969 0.3324 0.3490 0.052*
C1 0.20716 (19) 0.0758 (5) −0.3250 (9) 0.105 (2)
H1B 0.2323 0.0820 −0.2392 0.157*
H1C 0.2132 0.1081 −0.4299 0.157*
H1D 0.2022 0.0120 −0.3516 0.157*
C2 0.12874 (16) 0.1123 (3) −0.3594 (6) 0.0575 (12)
C3 0.09255 (15) 0.1571 (3) −0.2910 (6) 0.0543 (11)
C4 0.05153 (18) 0.1584 (4) −0.3904 (7) 0.0796 (16)
H4A 0.0273 0.1894 −0.3501 0.095*
C5 0.0471 (2) 0.1124 (5) −0.5522 (8) 0.0946 (19)
H5A 0.0194 0.1107 −0.6165 0.114*
C6 0.0828 (2) 0.0707 (5) −0.6157 (8) 0.0954 (19)
H6A 0.0794 0.0422 −0.7248 0.115*
C7 0.1229 (2) 0.0696 (4) −0.5235 (7) 0.0742 (15)
H7A 0.1470 0.0403 −0.5690 0.089*
C8 0.09539 (14) 0.2027 (3) −0.1186 (6) 0.0515 (11)
C9 0.10742 (16) 0.2703 (4) 0.1660 (8) 0.0652 (14)
C10 0.16044 (14) 0.2990 (3) 0.4122 (6) 0.0509 (11)
C11 0.05722 (17) 0.4453 (4) 0.6622 (8) 0.0873 (19)
H11A 0.0303 0.4444 0.5846 0.131*
H11B 0.0658 0.5077 0.6873 0.131*
H11C 0.0520 0.4143 0.7694 0.131*
C12 0.13322 (14) 0.3932 (3) 0.6683 (6) 0.0486 (10)
C13 0.16640 (13) 0.3438 (3) 0.5879 (5) 0.0467 (10)
C14 0.20858 (15) 0.3341 (3) 0.6785 (6) 0.0599 (12)
H14A 0.2305 0.3006 0.6276 0.072*
C15 0.21853 (18) 0.3729 (4) 0.8408 (7) 0.0683 (14)
H15A 0.2467 0.3653 0.9000 0.082*
C16 0.1862 (2) 0.4227 (4) 0.9133 (7) 0.0790 (17)
H16A 0.1934 0.4515 1.0205 0.095*
C17 0.14394 (18) 0.4321 (3) 0.8354 (7) 0.0653 (13)
H17A 0.1223 0.4639 0.8917 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0561 (8) 0.0660 (8) 0.0708 (8) 0.0122 (6) 0.0047 (6) −0.0030 (7)
O1 0.064 (2) 0.077 (2) 0.069 (2) 0.0236 (17) 0.0142 (18) −0.0027 (19)
O2 0.0527 (19) 0.107 (3) 0.068 (2) 0.0223 (19) 0.0017 (16) −0.028 (2)
O3 0.0505 (18) 0.070 (2) 0.067 (2) 0.0199 (15) 0.0081 (16) −0.0046 (18)
O4 0.095 (5) 0.093 (5) 0.239 (10) 0.000 0.060 (5) 0.000
N1 0.069 (3) 0.105 (4) 0.067 (3) 0.022 (3) 0.006 (2) −0.011 (3)
N2 0.051 (2) 0.087 (3) 0.047 (2) 0.018 (2) −0.0025 (17) −0.011 (2)
N3 0.0212 (15) 0.0347 (18) 0.074 (2) 0.0118 (13) 0.0067 (16) −0.0007 (18)
C1 0.091 (4) 0.124 (5) 0.104 (5) 0.055 (4) 0.040 (4) 0.011 (4)
C2 0.071 (3) 0.047 (3) 0.054 (3) 0.002 (2) 0.004 (2) 0.000 (2)
C3 0.060 (3) 0.055 (3) 0.048 (2) −0.003 (2) 0.001 (2) −0.003 (2)
C4 0.067 (3) 0.102 (4) 0.066 (3) −0.004 (3) −0.014 (3) −0.004 (3)
C5 0.096 (4) 0.122 (5) 0.062 (3) −0.019 (4) −0.021 (3) −0.015 (3)
C6 0.129 (5) 0.088 (4) 0.067 (4) −0.011 (4) −0.006 (3) −0.016 (3)
C7 0.106 (4) 0.058 (3) 0.060 (3) 0.008 (3) 0.016 (3) −0.011 (3)
C8 0.054 (3) 0.048 (3) 0.052 (2) 0.003 (2) 0.003 (2) 0.000 (2)
C9 0.054 (3) 0.069 (3) 0.073 (3) 0.015 (3) 0.013 (3) 0.015 (3)
C10 0.047 (2) 0.049 (3) 0.055 (3) 0.006 (2) −0.003 (2) 0.003 (2)
C11 0.070 (3) 0.101 (5) 0.095 (4) 0.042 (3) 0.025 (3) 0.002 (4)
C12 0.050 (2) 0.044 (2) 0.051 (2) 0.0060 (19) 0.006 (2) 0.004 (2)
C13 0.045 (2) 0.048 (2) 0.046 (2) −0.0029 (19) 0.0030 (19) −0.004 (2)
C14 0.045 (2) 0.067 (3) 0.067 (3) −0.001 (2) 0.002 (2) −0.003 (3)
C15 0.069 (3) 0.074 (4) 0.059 (3) −0.011 (3) −0.012 (3) −0.004 (3)
C16 0.102 (4) 0.064 (3) 0.067 (3) −0.014 (3) −0.021 (3) −0.009 (3)
C17 0.084 (3) 0.059 (3) 0.055 (3) 0.004 (3) 0.020 (3) −0.009 (2)

Geometric parameters (Å, °)

S—C8 1.712 (4) C4—C5 1.404 (8)
S—C9 1.751 (6) C4—H4A 0.9300
O1—C2 1.360 (5) C5—C6 1.354 (9)
O1—C1 1.429 (6) C5—H5A 0.9300
O2—C10 1.226 (5) C6—C7 1.343 (8)
O3—C12 1.347 (5) C6—H6A 0.9300
O3—C11 1.436 (5) C7—H7A 0.9300
O4—H4 0.8501 C10—C13 1.492 (6)
N1—C9 1.329 (6) C11—H11A 0.9600
N1—N2 1.337 (5) C11—H11B 0.9600
N2—C8 1.271 (5) C11—H11C 0.9600
N3—C9 1.171 (6) C12—C13 1.409 (6)
N3—C10 1.464 (5) C12—C17 1.411 (7)
N3—H3A 0.8600 C13—C14 1.397 (6)
C1—H1B 0.9600 C14—C15 1.374 (7)
C1—H1C 0.9600 C14—H14A 0.9300
C1—H1D 0.9600 C15—C16 1.364 (8)
C2—C7 1.398 (7) C15—H15A 0.9300
C2—C3 1.404 (6) C16—C17 1.361 (7)
C3—C4 1.390 (6) C16—H16A 0.9300
C3—C8 1.472 (6) C17—H17A 0.9300
C8—S—C9 87.3 (2) N2—C8—S 113.1 (3)
C2—O1—C1 118.8 (4) C3—C8—S 127.2 (3)
C12—O3—C11 118.8 (4) N3—C9—N1 120.5 (5)
C9—N1—N2 111.7 (4) N3—C9—S 127.8 (4)
C8—N2—N1 116.1 (4) N1—C9—S 111.7 (4)
C9—N3—C10 130.6 (4) O2—C10—N3 115.8 (4)
C9—N3—H3A 114.7 O2—C10—C13 122.2 (4)
C10—N3—H3A 114.7 N3—C10—C13 122.0 (4)
O1—C1—H1B 109.5 O3—C11—H11A 109.5
O1—C1—H1C 109.5 O3—C11—H11B 109.5
H1B—C1—H1C 109.5 H11A—C11—H11B 109.5
O1—C1—H1D 109.5 O3—C11—H11C 109.5
H1B—C1—H1D 109.5 H11A—C11—H11C 109.5
H1C—C1—H1D 109.5 H11B—C11—H11C 109.5
O1—C2—C7 124.0 (5) O3—C12—C13 117.3 (4)
O1—C2—C3 116.0 (4) O3—C12—C17 123.6 (4)
C7—C2—C3 120.0 (5) C13—C12—C17 119.0 (4)
C4—C3—C2 118.5 (4) C14—C13—C12 118.4 (4)
C4—C3—C8 117.8 (4) C14—C13—C10 116.0 (4)
C2—C3—C8 123.7 (4) C12—C13—C10 125.5 (4)
C3—C4—C5 119.4 (6) C15—C14—C13 121.8 (5)
C3—C4—H4A 120.3 C15—C14—H14A 119.1
C5—C4—H4A 120.3 C13—C14—H14A 119.1
C6—C5—C4 120.7 (6) C16—C15—C14 118.6 (5)
C6—C5—H5A 119.6 C16—C15—H15A 120.7
C4—C5—H5A 119.6 C14—C15—H15A 120.7
C7—C6—C5 121.0 (6) C17—C16—C15 122.8 (5)
C7—C6—H6A 119.5 C17—C16—H16A 118.6
C5—C6—H6A 119.5 C15—C16—H16A 118.6
C6—C7—C2 120.4 (5) C16—C17—C12 119.3 (5)
C6—C7—H7A 119.8 C16—C17—H17A 120.4
C2—C7—H7A 119.8 C12—C17—H17A 120.4
N2—C8—C3 119.6 (4)
C9—N1—N2—C8 1.8 (7) N2—N1—C9—N3 177.2 (5)
C1—O1—C2—C7 5.2 (7) N2—N1—C9—S −1.8 (6)
C1—O1—C2—C3 −174.9 (5) C8—S—C9—N3 −177.8 (5)
O1—C2—C3—C4 179.6 (4) C8—S—C9—N1 1.1 (4)
C7—C2—C3—C4 −0.5 (7) C9—N3—C10—O2 2.0 (7)
O1—C2—C3—C8 −0.8 (7) C9—N3—C10—C13 −179.0 (5)
C7—C2—C3—C8 179.1 (4) C11—O3—C12—C13 176.9 (4)
C2—C3—C4—C5 2.2 (8) C11—O3—C12—C17 −2.3 (7)
C8—C3—C4—C5 −177.4 (5) O3—C12—C13—C14 −178.2 (4)
C3—C4—C5—C6 −3.0 (10) C17—C12—C13—C14 1.0 (6)
C4—C5—C6—C7 2.0 (11) O3—C12—C13—C10 1.1 (6)
C5—C6—C7—C2 −0.3 (10) C17—C12—C13—C10 −179.7 (4)
O1—C2—C7—C6 179.4 (5) O2—C10—C13—C14 −2.1 (7)
C3—C2—C7—C6 −0.5 (8) N3—C10—C13—C14 179.0 (4)
N1—N2—C8—C3 178.5 (4) O2—C10—C13—C12 178.6 (4)
N1—N2—C8—S −0.9 (6) N3—C10—C13—C12 −0.3 (7)
C4—C3—C8—N2 −2.9 (7) C12—C13—C14—C15 −1.3 (7)
C2—C3—C8—N2 177.5 (5) C10—C13—C14—C15 179.3 (4)
C4—C3—C8—S 176.4 (4) C13—C14—C15—C16 −0.7 (8)
C2—C3—C8—S −3.2 (7) C14—C15—C16—C17 3.1 (9)
C9—S—C8—N2 −0.2 (4) C15—C16—C17—C12 −3.5 (8)
C9—S—C8—C3 −179.5 (4) O3—C12—C17—C16 −179.5 (4)
C10—N3—C9—N1 −179.7 (4) C13—C12—C17—C16 1.3 (7)
C10—N3—C9—S −0.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O3 0.86 2.04 2.706 (5) 134
O4—H4···N1i 0.85 2.24 2.796 (6) 123
C14—H14A···O2ii 0.93 2.49 3.316 (6) 148

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2483).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019934/hk2483sup1.cif

e-64-o1637-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019934/hk2483Isup2.hkl

e-64-o1637-Isup2.hkl (147.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES