Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):o1639–o1640. doi: 10.1107/S1600536808021454

Methyl 3-O-α-d-mannopyranosyl β-d-glucopyran­oside tetra­hydrate

Lars Eriksson a,*, Göran Widmalm b
PMCID: PMC2962246  PMID: 21203328

Abstract

The title compound, C13H24O11·4H2O, forms extended hydrogen-bonded networks. These are present between disaccharides, but not as inter-residue hydrogen bonds, as well as to water mol­ecules that in addition form an inter­molecular chain of hydrogen bonds. The conformation of the disaccharide is described by the glycosidic torsion angles ϕH = −34° and ψH = −5°. Macroscopically, the disaccharide was observed to be hygroscopic.

Related literature

For related literature, see: Cremer & Pople (1975); Eriksson & Widmalm (2005); Eriksson et al. (1997, 2000, 2002); Färnbäck et al. (2003, 2008); Hassel & Ottar (1947); Huskens (2006); Jansson et al. (1990); Juaristi & Cuevas (1992); Odelius et al. (1995); Vishnyakov et al. (2000).graphic file with name e-64-o1639-scheme1.jpg

Experimental

Crystal data

  • C13H24O11·4H2O

  • M r = 428.39

  • Monoclinic, Inline graphic

  • a = 18.275 (3) Å

  • b = 7.7293 (12) Å

  • c = 13.910 (3) Å

  • β = 97.87 (2)°

  • V = 1946.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 291 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 1997) T min = 0.95, T max = 0.98

  • 8973 measured reflections

  • 2017 independent reflections

  • 1706 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.059

  • S = 0.99

  • 2017 reflections

  • 287 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: EXPOSE (Stoe & Cie, 1997); cell refinement: CELL (Stoe & Cie, 1997); data reduction: INTEGRATE (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021454/om2251sup1.cif

e-64-o1639-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021454/om2251Isup2.hkl

e-64-o1639-Isup2.hkl (99.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles (°).

O5m—C5m—C6m—O6m −64.9 (2)
C4m—C5m—C6m—O6m 57.2 (2)
O5g—C1g—O1g—C7 −71.2 (2)
C2g—C1g—O1g—C7 168.7 (2)
O5m—C1m—O3g—C3g 85.18 (19)
C2m—C1m—O3g—C3g −151.40 (15)
C4g—C3g—O3g—C1m 112.63 (18)
C2g—C3g—O3g—C1m −124.11 (18)
O5g—C5g—C6g—O6g −69.7 (2)
C4g—C5g—C6g—O6g 50.1 (2)
H1m—C1m—O3g—C3g −34
C1m—O3g—C3g—H3g −5

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2m—H2m1⋯O3mi 0.82 1.96 2.732 (2) 156
O3m—H3m1⋯O6mii 0.82 1.89 2.705 (2) 172
O4m—H4m1⋯OW4iii 0.82 2.03 2.803 (2) 158
O6m—H6m⋯OW3iv 0.82 2.00 2.796 (2) 166
O2g—H2g1⋯O4mv 0.82 2.25 2.848 (2) 130
O2g—H2g1⋯O3mv 0.82 2.43 3.140 (2) 145
O4g—H4g1⋯OW2vi 0.82 1.91 2.733 (2) 177
O6g—H6g⋯OW1vi 0.82 2.00 2.794 (2) 162
OW1—H11⋯O4g 0.94 (2) 1.80 (2) 2.736 (2) 174 (4)
OW1—H12⋯OW2 0.97 (2) 1.92 (3) 2.834 (2) 156 (2)
OW2—H21⋯OW3 0.92 (2) 1.98 (2) 2.866 (2) 161 (4)
OW2—H22⋯O2gvi 0.90 (3) 2.06 (3) 2.915 (2) 159 (4)
OW3—H31⋯O1gvii 0.91 (3) 1.94 (3) 2.814 (2) 163 (4)
OW3—H32⋯OW4 0.90 (2) 1.92 (2) 2.807 (2) 167 (4)
OW4—H41⋯O6gvii 0.89 (2) 2.04 (2) 2.916 (2) 168 (3)
OW4—H42⋯O2mvi 0.89 (2) 1.88 (3) 2.747 (2) 163 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported by a grant from the Swedish Research Council (VR).

supplementary crystallographic information

Comment

Carbohydrates in biological systems, in the case of N-linked glycans of glycoproteins the result of post-translational modifications, are of functional significance due to e.g. their influence on protein stability. Furthermore, highly specific epitopes are formed by oligosaccharides present as glycoconjugates. The information contents in carbohydrate structures are indeed very large as a consequence of the immense numbers of permutations possible by combining different linkages and anomeric configurations of the sugar residues. It is of particular importance that the often weak carbohydrate interactions function by resorting to multivalent interactions upon cell-cell recognition (Huskens, 2006).

The major degrees of freedom in an oligosaccharide are described by the torsion angles φH, ψH, and ω. For the title compound the two former are present at the glycosidic α-(1 → 3)-linkage with φH being defined by H1m—C1m—O3g—C3g and ψH by C1m—O3g—C3g—H3g. The ω torsion angle, defined by O5—C5—C6—O6, refers to the conformation of the hydroxymethyl group of each sugar residue. The structure is described as the exo-anomeric conformation with φH = -34°, which, as a result of stereoelectronic effects, is characteristic of sugars in a cyclic form (Fig. 1). For the title compound the presence of the endo-anomeric effect (Juaristi & Cuevas, 1992) is evident from the difference in C—O bond lengths at the anomeric positions of the α-D-Manp residue having the axial bond C1m—O3g = 1.409 (2) Å and the β-D-Glcp residue having the equatorial bond C1g—O1g = 1.402 (2) Å, i.e., the bond with the axial electronegative atom is longer than the corresponding equatorial one, in complete agreement with ab initio data of model compounds (Odelius et al., 1995). At the glycosidic linkage ψH = -5°, leading to an almost eclipsed conformation and as a result the inter-residue distance across the glycosidic linkage for the proton pair H1m—H3g becomes short, only 2.12 Å.

The conformations of the hydroxymethyl groups are described by one of the three rotamers, gauche-trans, gauche-gauche, or trans-gauche with respect to the orientation of C6—O6 to C5—O5 and to C5—C4, respectively. In the present case both the mannopyranosyl and the glucopyranosyl residues show the gg conformation for their hydroxymethyl groups with ω = -64.9 (2)° and ω = -69.7 (2)°, respectively. This conformation is one of the two anticipated rotamers for the monosaccharides in the title compound, since both have an equatorial hydroxyl group at C4, which precludes the tg rotamer as a result of a non-favorable 1,3-diaxial interaction known as the Hassel-Ottar effect (Hassel & Ottar, 1947).

The calculated Cremer & Pople (1975) parameters show that both the mannose and glucose rings are close to the expected chair conformation, i.e.4C1. The parameters for the mannose ring are [Q=0.555 (2) Å, θ=3.0 (2) ° and φ=302 (3) °] and for the glucose ring [Q=0.575 (2) Å, θ=10.0 (2) ° and φ=327 (1) °].

The title compound was quite hygroscopic. This fact is consistent with the relatively high water content in the crystal of the title disaccharide. In our previous structural studies on disaccharide crystals the number of water molecules ranged from zero to three per disaccharide (Eriksson et al. 1997, 2000, 2002, 2005; Färnbäck et al. 2003, 2008). All hydroxyl groups and all H atoms of the four water molecules are hydrogen bond donors and the structure is stabilized by an elaborate hydrogen bond network. The four water molecules can be considered as lying in channels along the b-direction between the sugar residues as shown in Fig. 2. Previous conformational studies on the title compound that focused on solution patterns in binary aqueous solvent mixtures indicated that an inter-residue hydrogen bond was present between O6m as the donor atom and O2g as the acceptor atom (Vishnyakov et al. 2000). This was possible when the ω torsion angle of the mannosyl residue had the gt conformation. However, in the present crystal structure the exo-cyclic hydroxymethyl groups of the glucosyl residue as well as that in the mannosyl residue have the gg conformation, the latter of which precludes the intra-molecular hydrogen bond. Further analysis of the hydrogen bonding patterns showed that O6m acts as a donor to OW3. The O6g atom, on the other hand, acts as a donor to OW1, which acts as a donor to OW2, continued in a donor-acceptor relationship to OW3, and in an analogous way to OW4. Finally, the latter water molecule acts as a donor to the acceptor O6g in another molecule. Thus, the water-mediated chain starts from one glucosyl residue and ends at a symmetry related glucosyl residue. Along the 'chain of water molecules' various atoms of the sugar residues act as hydrogen bond donors and acceptors. The close proximity of O2g in one molecule and O3m and O4m in a symmetry related molecule at distances of 3.140 (2) Å and 2.848 (2) Å, respectively, indicate that a bifurcated hydrogen bond is present with O2g as the donor atom. The triangle formed by the three oxygen atoms is almost isosceles with an O3mv—O2g—O4mv [symmetry code (v): -x + 1/2,y + 1/2,-z] angle of 56.09 (4)°.

Experimental

The synthesis of the title compound was described by Jansson et al. (1990). The disaccharide was crystallized by slow evaporation from a mixture of water, ethanol and acetonitrile (1:1:1) at ambient temperature. The absolute configuration of each sugar residue is known from the starting compounds used in the synthesis.

Refinement

The hydrogen atoms were geometrically placed and constrained to ride on the parent atom. The C—H bond distances are 0.96 Å for CH3, 0.97 Å for CH2, 0.98 Å for CH. The Uiso(H) = 1.5 Ueq(C) for the CH3 and 1.2 Ueq(C) for all other H atoms. Due to the abscence of significant anomalous scatterers, the value of the Flack parameter (Flack, 1983) was not meaningful, thus the 1707 Friedel equivalents were included in the merging process (MERG 3 in SHELXL97). The H atoms of the water molecule were located from difference density map and the d(O—H) were restrained to retain the previously known geometry of the water molecule. The hydrogen atoms of the water molecule were given Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing slightly more than one unit cell, viewed along the b axis direction. The water molecules between the sugar residues are situated in channels along the b-direction.

Crystal data

C13H24O11·4H2O F000 = 920
Mr = 428.39 Dx = 1.462 Mg m3
Monoclinic, C2 Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 1641 reflections
a = 18.275 (3) Å θ = 2.3–25.9º
b = 7.7293 (12) Å µ = 0.14 mm1
c = 13.910 (3) Å T = 291 (2) K
β = 97.87 (2)º Block, colourless
V = 1946.4 (6) Å3 0.40 × 0.30 × 0.15 mm
Z = 4

Data collection

Stoe IPDS diffractometer 2017 independent reflections
Radiation source: fine-focus sealed tube 1706 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.037
Detector resolution: 6 pixels mm-1 θmax = 25.9º
T = 291(2) K θmin = 2.3º
φ scans h = −22→22
Absorption correction: numerical(X-RED; Stoe & Cie, 1997) k = −9→9
Tmin = 0.95, Tmax = 0.98 l = −16→17
8973 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059   w = 1/[σ2(Fo2) + (0.0391P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
2017 reflections Δρmax = 0.13 e Å3
287 parameters Δρmin = −0.14 e Å3
9 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0054 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1m 0.16629 (10) 0.4371 (3) 0.18727 (14) 0.0237 (4)
H1m 0.1530 0.4374 0.2531 0.028*
C2m 0.11852 (10) 0.3031 (3) 0.12731 (15) 0.0253 (4)
H2m 0.1312 0.1869 0.1525 0.030*
O2m 0.04476 (7) 0.3436 (2) 0.14055 (11) 0.0354 (4)
H2m1 0.0161 0.2829 0.1047 0.053*
C3m 0.13077 (10) 0.3138 (3) 0.02186 (15) 0.0231 (4)
H3m 0.1812 0.2752 0.0169 0.028*
O3m 0.08036 (8) 0.2061 (2) −0.03918 (11) 0.0297 (3)
H3m1 0.0874 0.1046 −0.0234 0.044*
C4m 0.12196 (11) 0.4985 (3) −0.01623 (14) 0.0246 (4)
H4m 0.0703 0.5351 −0.0193 0.030*
O4m 0.14398 (9) 0.5051 (2) −0.11052 (11) 0.0390 (4)
H4m1 0.1121 0.5547 −0.1478 0.059*
C5m 0.17184 (10) 0.6189 (3) 0.05093 (14) 0.0251 (4)
H5m 0.2233 0.5838 0.0501 0.030*
O5m 0.15526 (7) 0.60426 (18) 0.14856 (9) 0.0244 (3)
C6m 0.16458 (11) 0.8075 (3) 0.02356 (17) 0.0312 (5)
H6m1 0.1970 0.8747 0.0705 0.037*
H6m2 0.1809 0.8234 −0.0394 0.037*
O6m 0.09124 (8) 0.8723 (2) 0.01954 (13) 0.0393 (4)
H6m 0.0769 0.8585 0.0724 0.059*
C1g 0.41344 (10) 0.5571 (3) 0.33556 (15) 0.0276 (5)
H1g 0.3968 0.6384 0.3821 0.033*
O1g 0.47702 (7) 0.6210 (2) 0.30165 (10) 0.0340 (4)
C2g 0.35400 (10) 0.5359 (3) 0.24839 (15) 0.0288 (5)
H2g 0.3743 0.4734 0.1967 0.035*
O2g 0.32707 (8) 0.6996 (2) 0.21340 (13) 0.0441 (4)
H2g1 0.3564 0.7431 0.1808 0.066*
C3g 0.28842 (10) 0.4364 (3) 0.27749 (14) 0.0244 (4)
H3g 0.2609 0.5128 0.3159 0.029*
O3g 0.24034 (6) 0.38309 (19) 0.19220 (10) 0.0268 (3)
C4g 0.31150 (10) 0.2760 (3) 0.33673 (14) 0.0251 (4)
H4g 0.3316 0.1905 0.2954 0.030*
O4g 0.24809 (7) 0.2055 (2) 0.37211 (11) 0.0330 (4)
H4g1 0.2383 0.1108 0.3470 0.050*
C5g 0.37025 (10) 0.3225 (3) 0.42143 (15) 0.0278 (4)
H5g 0.3501 0.4101 0.4615 0.033*
O5g 0.43192 (7) 0.3957 (2) 0.38142 (11) 0.0310 (3)
C6g 0.39763 (12) 0.1712 (3) 0.48482 (17) 0.0400 (6)
H6g1 0.4398 0.2075 0.5304 0.048*
H6g2 0.3590 0.1348 0.5218 0.048*
O6g 0.41839 (9) 0.0293 (2) 0.42994 (15) 0.0498 (5)
H6g 0.3866 −0.0460 0.4273 0.075*
C7 0.53302 (12) 0.6785 (4) 0.37756 (18) 0.0435 (6)
H71 0.5146 0.7745 0.4109 0.065*
H72 0.5760 0.7139 0.3499 0.065*
H73 0.5459 0.5857 0.4225 0.065*
OW1 0.19300 (11) 0.2972 (3) 0.53816 (17) 0.0612 (5)
H11 0.2119 (18) 0.274 (5) 0.480 (2) 0.092*
H12 0.2364 (15) 0.320 (5) 0.585 (2) 0.092*
OW2 0.28912 (11) 0.3894 (3) 0.70793 (15) 0.0564 (5)
H21 0.3355 (13) 0.361 (5) 0.737 (3) 0.085*
H22 0.2615 (18) 0.332 (5) 0.747 (3) 0.085*
OW3 0.44168 (10) 0.3766 (3) 0.78999 (16) 0.0577 (5)
H31 0.4706 (19) 0.463 (4) 0.773 (3) 0.086*
H32 0.4659 (19) 0.275 (4) 0.787 (3) 0.086*
OW4 0.52138 (11) 0.0800 (3) 0.75157 (14) 0.0540 (5)
H41 0.5331 (19) 0.061 (5) 0.6924 (19) 0.081*
H42 0.4990 (18) −0.009 (4) 0.776 (3) 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1m 0.0207 (8) 0.0279 (11) 0.0223 (10) 0.0007 (8) 0.0020 (7) 0.0011 (8)
C2m 0.0215 (9) 0.0253 (11) 0.0285 (11) −0.0011 (8) 0.0014 (8) 0.0026 (9)
O2m 0.0218 (6) 0.0514 (10) 0.0336 (8) −0.0102 (7) 0.0067 (6) −0.0122 (7)
C3m 0.0188 (8) 0.0236 (10) 0.0264 (10) 0.0030 (8) 0.0015 (7) −0.0035 (9)
O3m 0.0329 (7) 0.0208 (7) 0.0322 (8) 0.0033 (6) −0.0064 (6) −0.0024 (6)
C4m 0.0258 (9) 0.0262 (11) 0.0218 (10) 0.0034 (8) 0.0026 (8) 0.0008 (9)
O4m 0.0518 (9) 0.0410 (10) 0.0261 (8) 0.0069 (8) 0.0118 (7) 0.0037 (7)
C5m 0.0227 (9) 0.0258 (10) 0.0273 (10) 0.0015 (8) 0.0049 (8) 0.0029 (9)
O5m 0.0255 (7) 0.0238 (7) 0.0236 (7) 0.0009 (6) 0.0023 (5) −0.0015 (6)
C6m 0.0305 (10) 0.0253 (11) 0.0377 (12) −0.0014 (9) 0.0045 (9) 0.0040 (10)
O6m 0.0382 (8) 0.0271 (8) 0.0528 (10) 0.0086 (7) 0.0070 (7) 0.0084 (8)
C1g 0.0230 (9) 0.0328 (12) 0.0277 (10) −0.0026 (8) 0.0059 (8) 0.0006 (9)
O1g 0.0244 (7) 0.0456 (9) 0.0323 (8) −0.0101 (7) 0.0056 (6) −0.0001 (7)
C2g 0.0243 (9) 0.0347 (12) 0.0276 (11) −0.0026 (9) 0.0046 (8) 0.0048 (9)
O2g 0.0347 (8) 0.0448 (10) 0.0522 (11) −0.0040 (8) 0.0033 (7) 0.0247 (9)
C3g 0.0220 (9) 0.0288 (11) 0.0214 (10) −0.0010 (8) −0.0002 (7) −0.0002 (9)
O3g 0.0202 (6) 0.0349 (8) 0.0238 (7) 0.0044 (6) −0.0027 (5) −0.0025 (7)
C4g 0.0218 (9) 0.0272 (11) 0.0263 (10) −0.0003 (8) 0.0029 (7) 0.0021 (9)
O4g 0.0304 (7) 0.0347 (9) 0.0351 (9) −0.0087 (7) 0.0082 (6) −0.0006 (8)
C5g 0.0239 (9) 0.0328 (11) 0.0263 (10) −0.0007 (8) 0.0023 (8) 0.0020 (9)
O5g 0.0213 (6) 0.0361 (8) 0.0348 (8) −0.0011 (6) 0.0006 (6) 0.0062 (7)
C6g 0.0327 (11) 0.0499 (16) 0.0357 (13) 0.0002 (10) −0.0017 (9) 0.0120 (11)
O6g 0.0454 (9) 0.0424 (10) 0.0628 (12) 0.0112 (8) 0.0112 (9) 0.0138 (9)
C7 0.0316 (11) 0.0531 (16) 0.0444 (14) −0.0129 (11) 0.0001 (9) −0.0019 (12)
OW1 0.0568 (11) 0.0722 (14) 0.0581 (13) −0.0008 (10) 0.0205 (9) −0.0107 (12)
OW2 0.0614 (11) 0.0459 (11) 0.0601 (12) 0.0062 (10) 0.0014 (9) 0.0157 (11)
OW3 0.0507 (10) 0.0498 (12) 0.0775 (14) −0.0013 (9) 0.0270 (10) 0.0152 (11)
OW4 0.0581 (11) 0.0581 (13) 0.0474 (11) −0.0042 (9) 0.0128 (9) 0.0088 (10)

Geometric parameters (Å, °)

C1m—O5m 1.403 (2) C2g—C3g 1.525 (3)
C1m—O3g 1.409 (2) C2g—H2g 0.9800
C1m—C2m 1.527 (3) O2g—H2g1 0.8200
C1m—H1m 0.9800 C3g—O3g 1.437 (2)
C2m—O2m 1.420 (2) C3g—C4g 1.516 (3)
C2m—C3m 1.516 (3) C3g—H3g 0.9800
C2m—H2m 0.9800 C4g—O4g 1.428 (2)
O2m—H2m1 0.8200 C4g—C5g 1.524 (3)
C3m—O3m 1.431 (2) C4g—H4g 0.9800
C3m—C4m 1.523 (3) O4g—H4g1 0.8200
C3m—H3m 0.9800 C5g—O5g 1.439 (2)
O3m—H3m1 0.8200 C5g—C6g 1.508 (3)
C4m—O4m 1.425 (2) C5g—H5g 0.9800
C4m—C5m 1.529 (3) C6g—O6g 1.417 (3)
C4m—H4m 0.9800 C6g—H6g1 0.9700
O4m—H4m1 0.8200 C6g—H6g2 0.9700
C5m—O5m 1.436 (2) O6g—H6g 0.8200
C5m—C6m 1.508 (3) C7—H71 0.9600
C5m—H5m 0.9800 C7—H72 0.9600
C6m—O6m 1.425 (3) C7—H73 0.9600
C6m—H6m1 0.9700 OW1—H11 0.94 (2)
C6m—H6m2 0.9700 OW1—H12 0.97 (2)
O6m—H6m 0.8200 OW2—H21 0.92 (2)
C1g—O1g 1.402 (2) OW2—H22 0.90 (2)
C1g—O5g 1.421 (3) OW3—H31 0.91 (2)
C1g—C2g 1.522 (3) OW3—H32 0.90 (2)
C1g—H1g 0.9800 OW4—H41 0.89 (2)
O1g—C7 1.437 (3) OW4—H42 0.89 (2)
C2g—O2g 1.419 (3) H1m—H3g 2.12
O5m—C1m—O3g 112.22 (16) C1g—O1g—C7 113.67 (16)
O5m—C1m—C2m 111.93 (15) O2g—C2g—C1g 110.69 (18)
O3g—C1m—C2m 107.40 (16) O2g—C2g—C3g 107.01 (16)
O5m—C1m—H1m 108.4 C1g—C2g—C3g 110.13 (17)
O3g—C1m—H1m 108.4 O2g—C2g—H2g 109.7
C2m—C1m—H1m 108.4 C1g—C2g—H2g 109.7
O2m—C2m—C3m 112.45 (16) C3g—C2g—H2g 109.7
O2m—C2m—C1m 105.16 (16) C2g—O2g—H2g1 109.5
C3m—C2m—C1m 110.02 (15) O3g—C3g—C4g 107.92 (16)
O2m—C2m—H2m 109.7 O3g—C3g—C2g 109.85 (16)
C3m—C2m—H2m 109.7 C4g—C3g—C2g 112.73 (16)
C1m—C2m—H2m 109.7 O3g—C3g—H3g 108.8
C2m—O2m—H2m1 109.5 C4g—C3g—H3g 108.8
O3m—C3m—C2m 111.96 (16) C2g—C3g—H3g 108.8
O3m—C3m—C4m 108.06 (15) C1m—O3g—C3g 115.46 (15)
C2m—C3m—C4m 111.41 (16) O4g—C4g—C3g 108.71 (15)
O3m—C3m—H3m 108.4 O4g—C4g—C5g 110.03 (16)
C2m—C3m—H3m 108.4 C3g—C4g—C5g 109.96 (16)
C4m—C3m—H3m 108.4 O4g—C4g—H4g 109.4
C3m—O3m—H3m1 109.5 C3g—C4g—H4g 109.4
O4m—C4m—C3m 108.92 (16) C5g—C4g—H4g 109.4
O4m—C4m—C5m 108.71 (16) C4g—O4g—H4g1 109.5
C3m—C4m—C5m 109.40 (15) O5g—C5g—C6g 108.43 (16)
O4m—C4m—H4m 109.9 O5g—C5g—C4g 107.44 (16)
C3m—C4m—H4m 109.9 C6g—C5g—C4g 114.28 (18)
C5m—C4m—H4m 109.9 O5g—C5g—H5g 108.9
C4m—O4m—H4m1 109.5 C6g—C5g—H5g 108.9
O5m—C5m—C6m 107.01 (16) C4g—C5g—H5g 108.9
O5m—C5m—C4m 110.16 (15) C1g—O5g—C5g 111.60 (14)
C6m—C5m—C4m 114.19 (17) O6g—C6g—C5g 112.14 (19)
O5m—C5m—H5m 108.4 O6g—C6g—H6g1 109.2
C6m—C5m—H5m 108.4 C5g—C6g—H6g1 109.2
C4m—C5m—H5m 108.4 O6g—C6g—H6g2 109.2
C1m—O5m—C5m 113.43 (15) C5g—C6g—H6g2 109.2
O6m—C6m—C5m 113.55 (17) H6g1—C6g—H6g2 107.9
O6m—C6m—H6m1 108.9 C6g—O6g—H6g 109.5
C5m—C6m—H6m1 108.9 O1g—C7—H71 109.5
O6m—C6m—H6m2 108.9 O1g—C7—H72 109.5
C5m—C6m—H6m2 108.9 H71—C7—H72 109.5
H6m1—C6m—H6m2 107.7 O1g—C7—H73 109.5
C6m—O6m—H6m 109.5 H71—C7—H73 109.5
O1g—C1g—O5g 107.66 (15) H72—C7—H73 109.5
O1g—C1g—C2g 107.69 (16) H11—OW1—H12 105 (3)
O5g—C1g—C2g 111.29 (17) H21—OW2—H22 100 (3)
O1g—C1g—H1g 110.0 H31—OW3—H32 109 (3)
O5g—C1g—H1g 110.0 H41—OW4—H42 114 (4)
C2g—C1g—H1g 110.0
O5m—C1m—C2m—O2m −67.68 (19) O1g—C1g—C2g—C3g 169.66 (17)
O3g—C1m—C2m—O2m 168.72 (15) O5g—C1g—C2g—C3g 51.9 (2)
O5m—C1m—C2m—C3m 53.6 (2) O2g—C2g—C3g—O3g 72.5 (2)
O3g—C1m—C2m—C3m −70.0 (2) C1g—C2g—C3g—O3g −167.17 (16)
O2m—C2m—C3m—O3m −55.7 (2) O2g—C2g—C3g—C4g −167.15 (17)
C1m—C2m—C3m—O3m −172.58 (15) C1g—C2g—C3g—C4g −46.8 (2)
O2m—C2m—C3m—C4m 65.4 (2) O5m—C1m—O3g—C3g 85.18 (19)
C1m—C2m—C3m—C4m −51.4 (2) C2m—C1m—O3g—C3g −151.40 (15)
O3m—C3m—C4m—O4m −64.6 (2) C4g—C3g—O3g—C1m 112.63 (18)
C2m—C3m—C4m—O4m 172.00 (15) C2g—C3g—O3g—C1m −124.11 (18)
O3m—C3m—C4m—C5m 176.70 (14) O3g—C3g—C4g—O4g −66.67 (19)
C2m—C3m—C4m—C5m 53.31 (19) C2g—C3g—C4g—O4g 171.85 (17)
O4m—C4m—C5m—O5m −175.11 (16) O3g—C3g—C4g—C5g 172.82 (14)
C3m—C4m—C5m—O5m −56.29 (19) C2g—C3g—C4g—C5g 51.3 (2)
O4m—C4m—C5m—C6m 64.5 (2) O4g—C4g—C5g—O5g −178.89 (16)
C3m—C4m—C5m—C6m −176.72 (17) C3g—C4g—C5g—O5g −59.2 (2)
O3g—C1m—O5m—C5m 61.40 (19) O4g—C4g—C5g—C6g 60.8 (2)
C2m—C1m—O5m—C5m −59.44 (19) C3g—C4g—C5g—C6g −179.52 (18)
C6m—C5m—O5m—C1m −174.57 (16) O1g—C1g—O5g—C5g 178.17 (15)
C4m—C5m—O5m—C1m 60.76 (18) C2g—C1g—O5g—C5g −64.0 (2)
O5m—C5m—C6m—O6m −64.9 (2) C6g—C5g—O5g—C1g −169.21 (17)
C4m—C5m—C6m—O6m 57.2 (2) C4g—C5g—O5g—C1g 66.8 (2)
O5g—C1g—O1g—C7 −71.2 (2) O5g—C5g—C6g—O6g −69.7 (2)
C2g—C1g—O1g—C7 168.7 (2) C4g—C5g—C6g—O6g 50.1 (2)
O1g—C1g—C2g—O2g −72.2 (2) H1m—C1m—O3g—C3g −34
O5g—C1g—C2g—O2g 170.02 (16) C1m—O3g—C3g—H3g −5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2m—H2m1···O3mi 0.82 1.96 2.732 (2) 156
O3m—H3m1···O6mii 0.82 1.89 2.705 (2) 172
O4m—H4m1···OW4iii 0.82 2.03 2.803 (2) 158
O6m—H6m···OW3iv 0.82 2.00 2.796 (2) 166
O2g—H2g1···O4mv 0.82 2.25 2.848 (2) 130
O2g—H2g1···O3mv 0.82 2.43 3.140 (2) 145
O4g—H4g1···OW2vi 0.82 1.91 2.733 (2) 177
O6g—H6g···OW1vi 0.82 2.00 2.794 (2) 162
OW1—H11···O4g 0.94 (2) 1.80 (2) 2.736 (2) 174 (4)
OW1—H12···OW2 0.97 (2) 1.92 (3) 2.834 (2) 156 (2)
OW2—H21···OW3 0.92 (2) 1.98 (2) 2.866 (2) 161 (4)
OW2—H22···O2gvi 0.90 (3) 2.06 (3) 2.915 (2) 159 (4)
OW3—H31···O1gvii 0.91 (3) 1.94 (3) 2.814 (2) 163 (4)
OW3—H32···OW4 0.90 (2) 1.92 (2) 2.807 (2) 167 (4)
OW4—H41···O6gvii 0.89 (2) 2.04 (2) 2.916 (2) 168 (3)
OW4—H42···O2mvi 0.89 (2) 1.88 (3) 2.747 (2) 163 (4)

Symmetry codes: (i) −x, y, −z; (ii) x, y−1, z; (iii) x−1/2, y+1/2, z−1; (iv) −x+1/2, y+1/2, −z+1; (v) −x+1/2, y+1/2, −z; (vi) −x+1/2, y−1/2, −z+1; (vii) −x+1, y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2251).

References

  1. Bergerhoff, G. (1996). DIAMOND Bonn, Germany.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Eriksson, L., Stenutz, R. & Widmalm, G. (1997). Acta Cryst. C53, 1105–1107.
  4. Eriksson, L., Stenutz, R. & Widmalm, G. (2000). Acta Cryst. C56, 702–704. [DOI] [PubMed]
  5. Eriksson, L., Stenutz, R. & Widmalm, G. (2002). Acta Cryst. C58, o328–o329. [DOI] [PubMed]
  6. Eriksson, L. & Widmalm, G. (2005). Acta Cryst. E61, o860–o862.
  7. Färnbäck, M., Eriksson, L. & Widmalm, G. (2003). Acta Cryst. C59, o171–o173. [DOI] [PubMed]
  8. Färnbäck, M., Eriksson, L. & Widmalm, G. (2008). Acta Cryst. C64, o31–o32. [DOI] [PubMed]
  9. Hassel, O. & Ottar, B. (1947). Acta Chem. Scand.1, 929–943.
  10. Huskens, J. (2006). Curr. Opin. Chem. Biol.10, 537–543. [DOI] [PubMed]
  11. Jansson, P.-E., Kenne, L., Persson, K. & Widmalm, G. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 591–598.
  12. Juaristi, E. & Cuevas, G. (1992). Tetrahedron, 48, 5019–5087.
  13. Odelius, M., Laaksonen, A. & Widmalm, G. (1995). J. Phys. Chem.99, 12686–12692.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  16. Stoe & Cie (1997). IPDS and X-RED. Stoe & CIE GmbH, Darmstadt, Germany.
  17. Vishnyakov, A., Widmalm, G. & Laaksonen, A. (2000). Angew. Chem. Int. Ed.39, 140–142. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021454/om2251sup1.cif

e-64-o1639-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021454/om2251Isup2.hkl

e-64-o1639-Isup2.hkl (99.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES