Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):o1449. doi: 10.1107/S1600536808020412

P,P-Diphenyl-N-(1,1,2,2-tetra­phenyl-1λ5-diphosphanyl­idene)phosphinous amide

Diane A Dickie a, Richard A Kemp a,*,
PMCID: PMC2962250  PMID: 21203164

Abstract

The title compound, C36H30NP3, a structural isomer of tris­(diphenyl­phosphino)amine, was unexpectedly isolated as the sole phospho­rus-containing product from the reaction of Mg[N(PPh2)2]2(THF)2 (THF is tetra­hydro­furan) with CO2. Its identity was confirmed by 31P NMR spectroscopy and single-crystal X-ray diffraction. The geometry at the two P(III) atoms is trigonal pyramidal, while the P(V) atom adopts a distorted tetrahedral geometry.

Related literature

For the original synthesis and spectroscopic characterization of the title compound, see: Nöth & Meinel (1967); Meinel & Nöth (1970). For the crystallographic characterization of the structural isomer N[P(C6H5)2]3, see: Ellermann et al. (1987). For related literature, see: Bruno et al. (2004).graphic file with name e-64-o1449-scheme1.jpg

Experimental

Crystal data

  • C36H30NP3

  • M r = 569.52

  • Monoclinic, Inline graphic

  • a = 9.3026 (13) Å

  • b = 10.8167 (15) Å

  • c = 29.750 (4) Å

  • β = 98.589 (6)°

  • V = 2960.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 228 (2) K

  • 0.57 × 0.51 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.88, T max = 0.96

  • 76797 measured reflections

  • 11496 independent reflections

  • 9167 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.118

  • S = 1.05

  • 11496 reflections

  • 481 parameters

  • All H-atom parameters refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020412/at2581sup1.cif

e-64-o1449-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020412/at2581Isup2.hkl

e-64-o1449-Isup2.hkl (562.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Eileen Duesler (UNM) for the X-ray data collection. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD), the National Science Foundation (grant Nos. CHE-0213165 and CHE-0443580) and the Sandia LDRD Program (grant Nos. 105932 and 113486). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract No. DE-AC04-94AL85000.

supplementary crystallographic information

Comment

The molecular stucture of the title compound, (I), is shown in Fig. 1. It was originally prepared by Nöth and Meinel [Nöth & Meinel (1967); and Meinel & Nöth (1970)] but its crystal structure was not determined at that time. We report herein the isolation of (I) as an unexpected product of the reaction of carbon dioxide with Mg[N(PPh2)2]2(THF)2. This compound was characterized by 31P NMR spectroscopy and single-crystal X-ray diffraction. The P═N double bond measures 1.5690 (10) Å, very close to the average value of similar bonds in a Mogul (Bruno et al., 2004) search of the Cambridge structural database (mean P=N 1.573 Å). The P—N single bond of 1.6755 (11) Å is significantly shorter than those in the structural isomer N(PPh2)3 (Ellermann, et al. 1987) (mean P—N = 1.740 Å), which is not surprising when the different hybridization of nitrogen (sp2versus sp3) is considered. It is also, however, shorter than the average P—N(sp2) bond length of 1.706 Å. The geometry at each of the two P(III) atoms is trigonal pyramidal, due to the stereochemically active lone pair on each of these atoms. The P(V) atom adopts distorted tetrahedral geometry.

Experimental

Under an inert argon atmosphere, Mg[N(PPh2)2]2(THF)2 (0.67 g, 0.72 mmol) was dissolved in 40 ml anhydrous THF. The solution was exposed to 2 eq. of carbon dioxide at 10 psig. After 16 h, the solution was purged with argon. Colourless crystals of the title compound crystallized from the solution over the course of two weeks. 31P{1H} NMR (101.255 MHz, THF) δ 41.5 (d, 2JPP = 97 Hz, Ph2P-N), 17.8 (d of d, 2JPP = 97 Hz, 1JPP = 249 Hz, N=PPh2), -9.4 (d, 1JPP = 249 Hz, P-PPh2) p.p.m..

Refinement

H atoms were located from a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing full numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms have been removed for clarity.

Crystal data

C36H30NP3 F000 = 1192
Mr = 569.52 Dx = 1.278 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9384 reflections
a = 9.3026 (13) Å θ = 2.3–33.2º
b = 10.8167 (15) Å µ = 0.23 mm1
c = 29.750 (4) Å T = 228 (2) K
β = 98.589 (6)º Square, colourless
V = 2960.0 (7) Å3 0.58 × 0.51 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 11496 independent reflections
Radiation source: fine-focus sealed tube 9167 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 228(2) K θmax = 33.5º
φ and ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2001) h = −14→14
Tmin = 0.88, Tmax = 0.96 k = −16→16
76797 measured reflections l = −45→45

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 All H-atom parameters refined
wR(F2) = 0.118   w = 1/[σ2(Fo2) + (0.0543P)2 + 1.05P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
11496 reflections Δρmax = 0.41 e Å3
481 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.89827 (12) 0.55872 (10) 0.13502 (4) 0.0285 (2)
P1 0.83490 (3) 0.52397 (3) 0.080793 (10) 0.02539 (7)
P2 0.98888 (3) 0.67406 (3) 0.154676 (10) 0.02169 (6)
P3 0.88674 (3) 0.85071 (3) 0.171889 (11) 0.02562 (7)
C1 0.92572 (12) 0.37613 (11) 0.07254 (4) 0.0265 (2)
C2 0.94010 (18) 0.34039 (15) 0.02865 (5) 0.0398 (3)
H2 0.915 (2) 0.396 (2) 0.0046 (7) 0.052 (5)*
C3 0.9911 (2) 0.22253 (18) 0.02040 (7) 0.0533 (4)
H3 0.998 (3) 0.200 (2) −0.0104 (8) 0.067 (7)*
C4 1.03047 (18) 0.14200 (15) 0.05566 (7) 0.0494 (4)
H4 1.062 (2) 0.061 (2) 0.0493 (7) 0.064 (6)*
C5 1.02013 (17) 0.17767 (14) 0.09955 (7) 0.0433 (3)
H5 1.045 (2) 0.120 (2) 0.1238 (7) 0.059 (6)*
C6 0.96912 (15) 0.29430 (13) 0.10817 (5) 0.0344 (3)
H6 0.958 (2) 0.3171 (19) 0.1389 (7) 0.053 (6)*
C11 0.65810 (12) 0.45178 (11) 0.08595 (4) 0.0270 (2)
C12 0.60725 (15) 0.43744 (13) 0.12725 (5) 0.0339 (3)
H12 0.661 (2) 0.4670 (17) 0.1541 (6) 0.039 (5)*
C13 0.47230 (17) 0.38278 (15) 0.12874 (6) 0.0444 (3)
H13 0.437 (2) 0.380 (2) 0.1578 (7) 0.055 (6)*
C14 0.38678 (16) 0.34312 (14) 0.08938 (7) 0.0468 (4)
H14 0.297 (2) 0.306 (2) 0.0912 (7) 0.063 (6)*
C15 0.43625 (16) 0.35656 (14) 0.04816 (7) 0.0439 (4)
H15 0.378 (2) 0.332 (2) 0.0199 (7) 0.062 (6)*
C16 0.57122 (15) 0.41024 (13) 0.04646 (5) 0.0349 (3)
H16 0.6072 (19) 0.4179 (17) 0.0181 (6) 0.037 (4)*
C21 1.13511 (12) 0.72160 (10) 0.12433 (4) 0.02325 (19)
C22 1.20846 (14) 0.63055 (12) 0.10377 (5) 0.0318 (2)
H22 1.180 (2) 0.5479 (18) 0.1056 (6) 0.045 (5)*
C23 1.32338 (15) 0.66224 (14) 0.08106 (5) 0.0371 (3)
H23 1.372 (2) 0.597 (2) 0.0673 (7) 0.057 (6)*
C24 1.36496 (15) 0.78400 (14) 0.07826 (5) 0.0358 (3)
H24 1.448 (2) 0.8079 (19) 0.0628 (6) 0.049 (5)*
C25 1.29177 (17) 0.87515 (14) 0.09808 (6) 0.0420 (3)
H25 1.318 (2) 0.957 (2) 0.0961 (7) 0.061 (6)*
C26 1.17755 (16) 0.84426 (12) 0.12116 (6) 0.0371 (3)
H26 1.132 (2) 0.909 (2) 0.1355 (7) 0.055 (6)*
C31 1.06971 (12) 0.63888 (11) 0.21231 (4) 0.0256 (2)
C32 1.16599 (14) 0.72246 (13) 0.23711 (5) 0.0326 (2)
H32 1.197 (2) 0.7950 (18) 0.2228 (6) 0.042 (5)*
C33 1.21154 (17) 0.70324 (17) 0.28318 (5) 0.0419 (3)
H33 1.277 (2) 0.7602 (18) 0.2992 (6) 0.045 (5)*
C34 1.16275 (19) 0.60144 (19) 0.30440 (5) 0.0488 (4)
H34 1.191 (2) 0.587 (2) 0.3358 (7) 0.056 (6)*
C35 1.0706 (2) 0.51676 (18) 0.27995 (6) 0.0491 (4)
H35 1.041 (2) 0.449 (2) 0.2946 (7) 0.061 (6)*
C36 1.02326 (16) 0.53572 (13) 0.23390 (5) 0.0362 (3)
H36 0.953 (2) 0.4794 (18) 0.2163 (6) 0.047 (5)*
C41 0.77800 (13) 0.90632 (11) 0.11987 (4) 0.0268 (2)
C42 0.78720 (15) 0.86532 (13) 0.07605 (5) 0.0334 (3)
H42 0.842 (2) 0.7942 (18) 0.0716 (6) 0.041 (5)*
C43 0.71842 (18) 0.93088 (16) 0.03862 (5) 0.0420 (3)
H43 0.727 (2) 0.9039 (19) 0.0095 (7) 0.052 (5)*
C44 0.64070 (18) 1.03665 (16) 0.04451 (6) 0.0470 (4)
H44 0.597 (2) 1.082 (2) 0.0194 (7) 0.058 (6)*
C45 0.6267 (2) 1.07566 (16) 0.08773 (7) 0.0506 (4)
H45 0.578 (3) 1.150 (2) 0.0926 (8) 0.070 (7)*
C46 0.69448 (17) 1.01113 (14) 0.12517 (6) 0.0406 (3)
H46 0.684 (3) 1.038 (2) 0.1553 (8) 0.069 (7)*
C51 0.75546 (14) 0.78245 (12) 0.20420 (4) 0.0296 (2)
C52 0.78649 (17) 0.79087 (16) 0.25158 (5) 0.0407 (3)
H52 0.878 (3) 0.839 (2) 0.2671 (8) 0.067 (7)*
C53 0.6955 (2) 0.73483 (19) 0.27841 (6) 0.0523 (4)
H53 0.719 (3) 0.744 (2) 0.3110 (8) 0.073 (7)*
C54 0.5732 (2) 0.67193 (19) 0.25838 (7) 0.0581 (5)
H54 0.512 (3) 0.633 (2) 0.2772 (8) 0.071 (7)*
C55 0.5397 (2) 0.66580 (18) 0.21142 (7) 0.0523 (4)
H55 0.460 (2) 0.623 (2) 0.1988 (7) 0.058 (6)*
C56 0.63044 (15) 0.72019 (14) 0.18414 (5) 0.0375 (3)
H56 0.608 (2) 0.7168 (18) 0.1505 (6) 0.044 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0314 (5) 0.0258 (4) 0.0285 (5) −0.0062 (4) 0.0052 (4) −0.0046 (4)
P1 0.02921 (14) 0.02131 (13) 0.02575 (14) −0.00134 (10) 0.00446 (11) 0.00031 (10)
P2 0.02190 (12) 0.01984 (12) 0.02357 (13) 0.00031 (9) 0.00413 (9) −0.00128 (9)
P3 0.02697 (13) 0.02346 (13) 0.02645 (14) 0.00363 (10) 0.00405 (11) −0.00289 (10)
C1 0.0255 (5) 0.0250 (5) 0.0293 (5) −0.0026 (4) 0.0054 (4) −0.0024 (4)
C2 0.0473 (8) 0.0408 (7) 0.0325 (7) 0.0040 (6) 0.0102 (6) −0.0065 (6)
C3 0.0592 (10) 0.0503 (10) 0.0526 (10) 0.0056 (8) 0.0156 (8) −0.0225 (8)
C4 0.0397 (7) 0.0323 (7) 0.0766 (12) 0.0038 (6) 0.0104 (8) −0.0161 (7)
C5 0.0372 (7) 0.0297 (6) 0.0628 (10) 0.0048 (5) 0.0063 (7) 0.0041 (6)
C6 0.0359 (6) 0.0307 (6) 0.0374 (7) 0.0035 (5) 0.0083 (5) 0.0025 (5)
C11 0.0249 (5) 0.0220 (5) 0.0331 (6) 0.0018 (4) 0.0009 (4) −0.0004 (4)
C12 0.0308 (6) 0.0335 (6) 0.0378 (7) −0.0013 (5) 0.0066 (5) 0.0010 (5)
C13 0.0349 (7) 0.0404 (8) 0.0605 (10) −0.0025 (6) 0.0159 (7) 0.0065 (7)
C14 0.0275 (6) 0.0296 (6) 0.0824 (13) −0.0023 (5) 0.0047 (7) 0.0017 (7)
C15 0.0327 (6) 0.0313 (7) 0.0621 (10) 0.0017 (5) −0.0115 (6) −0.0075 (6)
C16 0.0333 (6) 0.0302 (6) 0.0383 (7) 0.0035 (5) −0.0038 (5) −0.0041 (5)
C21 0.0229 (4) 0.0222 (5) 0.0249 (5) 0.0011 (4) 0.0042 (4) −0.0002 (4)
C22 0.0330 (6) 0.0257 (5) 0.0389 (7) 0.0029 (4) 0.0133 (5) −0.0014 (5)
C23 0.0362 (6) 0.0369 (7) 0.0418 (7) 0.0059 (5) 0.0179 (6) −0.0011 (5)
C24 0.0294 (6) 0.0439 (7) 0.0362 (7) 0.0003 (5) 0.0112 (5) 0.0068 (5)
C25 0.0428 (7) 0.0304 (6) 0.0570 (9) −0.0060 (6) 0.0216 (7) 0.0032 (6)
C26 0.0395 (6) 0.0231 (5) 0.0533 (8) −0.0019 (5) 0.0214 (6) −0.0032 (5)
C31 0.0246 (5) 0.0256 (5) 0.0265 (5) 0.0029 (4) 0.0035 (4) 0.0013 (4)
C32 0.0288 (5) 0.0358 (6) 0.0319 (6) −0.0015 (5) 0.0006 (5) −0.0008 (5)
C33 0.0358 (7) 0.0542 (9) 0.0329 (7) 0.0022 (6) −0.0042 (5) −0.0036 (6)
C34 0.0501 (9) 0.0644 (11) 0.0297 (7) 0.0090 (8) −0.0009 (6) 0.0087 (7)
C35 0.0574 (9) 0.0501 (9) 0.0395 (8) 0.0004 (8) 0.0065 (7) 0.0178 (7)
C36 0.0414 (7) 0.0321 (6) 0.0347 (7) −0.0024 (5) 0.0043 (5) 0.0063 (5)
C41 0.0270 (5) 0.0227 (5) 0.0306 (5) 0.0023 (4) 0.0044 (4) 0.0014 (4)
C42 0.0363 (6) 0.0321 (6) 0.0314 (6) 0.0050 (5) 0.0039 (5) 0.0009 (5)
C43 0.0453 (8) 0.0467 (8) 0.0322 (7) −0.0005 (6) −0.0002 (6) 0.0070 (6)
C44 0.0443 (8) 0.0412 (8) 0.0506 (9) 0.0016 (6) −0.0088 (7) 0.0160 (7)
C45 0.0508 (9) 0.0344 (7) 0.0634 (11) 0.0167 (7) −0.0021 (8) 0.0064 (7)
C46 0.0440 (7) 0.0319 (7) 0.0451 (8) 0.0143 (6) 0.0045 (6) −0.0007 (6)
C51 0.0309 (5) 0.0318 (6) 0.0275 (5) 0.0088 (4) 0.0089 (4) 0.0001 (4)
C52 0.0431 (7) 0.0515 (9) 0.0290 (6) 0.0117 (6) 0.0105 (6) 0.0003 (6)
C53 0.0608 (10) 0.0637 (11) 0.0370 (8) 0.0184 (9) 0.0226 (7) 0.0118 (7)
C54 0.0637 (11) 0.0529 (10) 0.0678 (12) 0.0132 (8) 0.0425 (10) 0.0185 (9)
C55 0.0424 (8) 0.0508 (9) 0.0690 (12) −0.0034 (7) 0.0252 (8) 0.0009 (8)
C56 0.0329 (6) 0.0409 (7) 0.0408 (7) 0.0017 (5) 0.0118 (5) −0.0006 (6)

Geometric parameters (Å, °)

N1—P2 1.5690 (10) C24—H24 0.99 (2)
N1—P1 1.6755 (11) C25—C26 1.3892 (19)
P1—C1 1.8421 (12) C25—H25 0.92 (2)
P1—C11 1.8476 (12) C26—H26 0.95 (2)
P2—C31 1.8071 (12) C31—C36 1.3882 (18)
P2—C21 1.8156 (11) C31—C32 1.4023 (18)
P2—P3 2.2273 (5) C32—C33 1.388 (2)
P3—C51 1.8196 (13) C32—H32 0.958 (19)
P3—C41 1.8200 (13) C33—C34 1.379 (3)
C1—C2 1.3873 (18) C33—H33 0.94 (2)
C1—C6 1.3935 (19) C34—C35 1.385 (3)
C2—C3 1.395 (2) C34—H34 0.95 (2)
C2—H2 0.94 (2) C35—C36 1.390 (2)
C3—C4 1.371 (3) C35—H35 0.92 (2)
C3—H3 0.96 (2) C36—H36 0.99 (2)
C4—C5 1.379 (3) C41—C42 1.3917 (18)
C4—H4 0.95 (2) C41—C46 1.3965 (18)
C5—C6 1.385 (2) C42—C43 1.393 (2)
C5—H5 0.96 (2) C42—H42 0.943 (19)
C6—H6 0.97 (2) C43—C44 1.378 (2)
C11—C12 1.3895 (18) C43—H43 0.93 (2)
C11—C16 1.3972 (18) C44—C45 1.378 (3)
C12—C13 1.394 (2) C44—H44 0.93 (2)
C12—H12 0.933 (18) C45—C46 1.384 (2)
C13—C14 1.382 (3) C45—H45 0.95 (2)
C13—H13 0.97 (2) C46—H46 0.96 (2)
C14—C15 1.380 (3) C51—C56 1.398 (2)
C14—H14 0.93 (2) C51—C52 1.3991 (19)
C15—C16 1.391 (2) C52—C53 1.386 (2)
C15—H15 0.97 (2) C52—H52 1.04 (2)
C16—H16 0.957 (17) C53—C54 1.382 (3)
C21—C22 1.3909 (16) C53—H53 0.97 (2)
C21—C26 1.3915 (17) C54—C55 1.387 (3)
C22—C23 1.3901 (18) C54—H54 0.96 (2)
C22—H22 0.94 (2) C55—C56 1.386 (2)
C23—C24 1.379 (2) C55—H55 0.91 (2)
C23—H23 0.97 (2) C56—H56 0.990 (19)
C24—C25 1.379 (2)
P2—N1—P1 129.01 (7) C24—C25—C26 120.13 (13)
N1—P1—C1 102.74 (6) C24—C25—H25 120.2 (14)
N1—P1—C11 101.80 (6) C26—C25—H25 119.7 (14)
C1—P1—C11 94.35 (5) C25—C26—C21 120.58 (12)
N1—P2—C31 108.08 (6) C25—C26—H26 118.3 (13)
N1—P2—C21 116.14 (5) C21—C26—H26 121.1 (13)
C31—P2—C21 107.15 (5) C36—C31—C32 119.56 (12)
N1—P2—P3 122.96 (4) C36—C31—P2 119.62 (10)
C31—P2—P3 95.39 (4) C32—C31—P2 120.40 (9)
C21—P2—P3 104.38 (4) C33—C32—C31 119.97 (13)
C51—P3—C41 104.57 (6) C33—C32—H32 119.6 (11)
C51—P3—P2 96.68 (4) C31—C32—H32 120.4 (11)
C41—P3—P2 106.86 (4) C34—C33—C32 119.90 (15)
C2—C1—C6 118.77 (13) C34—C33—H33 121.4 (12)
C2—C1—P1 118.55 (10) C32—C33—H33 118.7 (12)
C6—C1—P1 122.45 (10) C33—C34—C35 120.53 (15)
C1—C2—C3 120.23 (16) C33—C34—H34 121.2 (13)
C1—C2—H2 119.5 (13) C35—C34—H34 118.3 (13)
C3—C2—H2 120.2 (13) C34—C35—C36 120.01 (15)
C4—C3—C2 120.34 (16) C34—C35—H35 119.2 (14)
C4—C3—H3 121.6 (14) C36—C35—H35 120.8 (14)
C2—C3—H3 118.0 (15) C31—C36—C35 120.00 (14)
C3—C4—C5 119.92 (15) C31—C36—H36 118.7 (11)
C3—C4—H4 119.2 (13) C35—C36—H36 121.3 (11)
C5—C4—H4 120.9 (13) C42—C41—C46 118.52 (12)
C4—C5—C6 120.29 (16) C42—C41—P3 125.94 (9)
C4—C5—H5 119.1 (13) C46—C41—P3 114.86 (10)
C6—C5—H5 120.5 (13) C41—C42—C43 120.11 (13)
C5—C6—C1 120.40 (14) C41—C42—H42 120.0 (11)
C5—C6—H6 119.7 (12) C43—C42—H42 119.8 (11)
C1—C6—H6 119.8 (12) C44—C43—C42 120.54 (15)
C12—C11—C16 118.50 (12) C44—C43—H43 119.9 (13)
C12—C11—P1 123.05 (10) C42—C43—H43 119.6 (13)
C16—C11—P1 118.45 (10) C45—C44—C43 119.81 (14)
C11—C12—C13 120.16 (14) C45—C44—H44 119.6 (13)
C11—C12—H12 120.7 (11) C43—C44—H44 120.6 (13)
C13—C12—H12 119.1 (11) C44—C45—C46 120.09 (15)
C14—C13—C12 120.79 (16) C44—C45—H45 121.3 (14)
C14—C13—H13 121.1 (12) C46—C45—H45 118.4 (14)
C12—C13—H13 117.9 (13) C45—C46—C41 120.86 (15)
C15—C14—C13 119.60 (14) C45—C46—H46 120.0 (14)
C15—C14—H14 121.1 (13) C41—C46—H46 119.1 (14)
C13—C14—H14 119.3 (13) C56—C51—C52 119.65 (13)
C14—C15—C16 119.93 (15) C56—C51—P3 123.44 (10)
C14—C15—H15 121.8 (13) C52—C51—P3 116.88 (11)
C16—C15—H15 118.3 (13) C53—C52—C51 119.98 (17)
C15—C16—C11 121.02 (15) C53—C52—H52 119.4 (12)
C15—C16—H16 120.3 (11) C51—C52—H52 120.6 (12)
C11—C16—H16 118.6 (11) C54—C53—C52 120.06 (16)
C22—C21—C26 118.84 (11) C54—C53—H53 122.1 (15)
C22—C21—P2 118.12 (9) C52—C53—H53 117.8 (15)
C26—C21—P2 123.03 (9) C53—C54—C55 120.31 (16)
C23—C22—C21 120.17 (12) C53—C54—H54 119.3 (14)
C23—C22—H22 120.4 (12) C55—C54—H54 120.4 (14)
C21—C22—H22 119.4 (12) C56—C55—C54 120.30 (18)
C24—C23—C22 120.53 (12) C56—C55—H55 120.5 (14)
C24—C23—H23 121.4 (13) C54—C55—H55 119.2 (14)
C22—C23—H23 118.1 (13) C55—C56—C51 119.66 (16)
C23—C24—C25 119.74 (12) C55—C56—H56 121.4 (11)
C23—C24—H24 121.5 (12) C51—C56—H56 118.9 (11)
C25—C24—H24 118.7 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2581).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [DOI] [PubMed]
  6. Ellermann, J., Köck, E., Zimmermann, H. & Gomm, M. (1987). Acta Cryst. C43, 1795–1798.
  7. Meinel, L. & Nöth, H. (1970). Z. Anorg. Allg. Chem.373, 36–47.
  8. Nöth, N. & Meinel, L. (1967). Z. Anorg. Allg. Chem.349, 225–240.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2008). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020412/at2581sup1.cif

e-64-o1449-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020412/at2581Isup2.hkl

e-64-o1449-Isup2.hkl (562.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES