Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Feb;87(2):519–527. doi: 10.1172/JCI115026

Quantitation of G0 and G1 phase cells in primary carcinomas. Antibody to M1 subunit of ribonucleotide reductase shows G1 phase restriction point block.

D L Tay 1, P S Bhathal 1, R M Fox 1
PMCID: PMC296339  PMID: 1991836

Abstract

Human cancers have an apparent low growth fraction, the bulk of cells presumed to being out of cycle in a G0 quiescent state due to the inability in the past to distinguish G0 from G1 cells. The allosteric M1 subunit of ribonucleotide reductase (M1-RR) is constitutively expressed by cycling cells (i.e., G1, S, G2-M). It is acquired during transition from G0 to G1, lost during exit to G0 and thus distinguishes G0 from G1 cells. To estimate the proportion of G0 and G1 cells in primary human breast (n = 5) and colorectal (n = 12) adenocarcinomas, we used both analytical DNA flow cytometry (ADFC) and immunoperoxidase staining of sections with the monoclonal antibody to M1-RR (MAb M1-RR). ADFC of fresh tumors revealed a low percentage of cells in the S phase (4.0 +/- 3.4%) but immunoperoxidase staining for M1-RR revealed an unexpectedly high proportion of positive cells (52.4 +/- 12.7%) in the G1, S, G2-M phases indicating a high G1 content of primary human tumors. Thus, human cancers are blocked in transition in G1 and are not predominantly in a G0 or quiescent differentiated state. This block was interpreted to mean that human cancers are responding to putative regulatory events at a restriction point in the G1 phase, such as relative growth factor deficiency, density inhibition, antiproliferative cytokines, or gene products. Using flow cytometry for both DNA and M1-RR content we found that human colon cancer cell lines arrest in the G1 but not G0 phase upon serum deprivation or density inhibition. Similarly, human breast cancer cell lines are arrested in G1 but not G0 phase by medroxyprogesterone acetate (MPA) or tamoxifen exposure. These findings match our in situ observations, and support the concept of a restriction point block in primary human tumors.

Full text

PDF
519

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer K. D., Lincoln S. T., Vera-Roman J. M., Wallemark C. B., Chmiel J. S., Madurski M. L., Murad T., Scarpelli D. G. Prognostic implications of proliferative activity and DNA aneuploidy in colonic adenocarcinomas. Lab Invest. 1987 Sep;57(3):329–335. [PubMed] [Google Scholar]
  2. Bleiberg H., Buyse M., van den Heule B., Galand P. Cell cycle parameters and prognosis of colorectal cancer. Eur J Cancer Clin Oncol. 1984 Mar;20(3):391–396. doi: 10.1016/0277-5379(84)90086-5. [DOI] [PubMed] [Google Scholar]
  3. Campisi J., Pardee A. B. Post-transcriptional control of the onset of DNA synthesis by an insulin-like growth factor. Mol Cell Biol. 1984 Sep;4(9):1807–1814. doi: 10.1128/mcb.4.9.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camplejohn R. S. Colorectal cancer. Cell kinetics. Recent Results Cancer Res. 1982;83:21–30. [PubMed] [Google Scholar]
  5. Chang W. W., Leblond C. P. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am J Anat. 1971 May;131(1):73–99. doi: 10.1002/aja.1001310105. [DOI] [PubMed] [Google Scholar]
  6. Deschner E. E., Lipkin M. Study of human rectal epithelial cells in vitro. III. RNA, protein, and DNA synthesis in polyps and adjacent mucosa. J Natl Cancer Inst. 1970 Jan;44(1):175–185. [PubMed] [Google Scholar]
  7. Dolbeare F., Gratzner H., Pallavicini M. G., Gray J. W. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5573–5577. doi: 10.1073/pnas.80.18.5573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engström Y., Rozell B., Hansson H. A., Stemme S., Thelander L. Localization of ribonucleotide reductase in mammalian cells. EMBO J. 1984 Apr;3(4):863–867. doi: 10.1002/j.1460-2075.1984.tb01897.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finlay C. A., Hinds P. W., Levine A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989 Jun 30;57(7):1083–1093. doi: 10.1016/0092-8674(89)90045-7. [DOI] [PubMed] [Google Scholar]
  10. Frankfurt O. S., Slocum H. K., Rustum Y. M., Arbuck S. G., Pavelic Z. P., Petrelli N., Huben R. P., Pontes E. J., Greco W. R. Flow cytometric analysis of DNA aneuploidy in primary and metastatic human solid tumors. Cytometry. 1984 Jan;5(1):71–80. doi: 10.1002/cyto.990050111. [DOI] [PubMed] [Google Scholar]
  11. Garcia R. L., Coltrera M. D., Gown A. M. Analysis of proliferative grade using anti-PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Comparison with flow cytometric analysis. Am J Pathol. 1989 Apr;134(4):733–739. [PMC free article] [PubMed] [Google Scholar]
  12. Gerdes J., Lemke H., Baisch H., Wacker H. H., Schwab U., Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984 Oct;133(4):1710–1715. [PubMed] [Google Scholar]
  13. Hedley D. W., Friedlander M. L., Taylor I. W., Rugg C. A., Musgrove E. A. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem. 1983 Nov;31(11):1333–1335. doi: 10.1177/31.11.6619538. [DOI] [PubMed] [Google Scholar]
  14. Hiddemann W., Von Bassewitz D. B., Kleinemeier H. J., Schulte-Brochterbeck E., Hauss J., Lingemann B., Büchner T., Grundmann E. DNA stemline heterogeneity in colorectal cancer. Cancer. 1986 Jul 15;58(2):258–263. doi: 10.1002/1097-0142(19860715)58:2<258::aid-cncr2820580210>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  15. Hinds P., Finlay C., Levine A. J. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol. 1989 Feb;63(2):739–746. doi: 10.1128/jvi.63.2.739-746.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keydar I., Chen L., Karby S., Weiss F. R., Delarea J., Radu M., Chaitcik S., Brenner H. J. Establishment and characterization of a cell line of human breast carcinoma origin. Eur J Cancer. 1979 May;15(5):659–670. doi: 10.1016/0014-2964(79)90139-7. [DOI] [PubMed] [Google Scholar]
  17. LIPKIN M., SHERLOCK P., BELL B. CELL PROLIFERATION KINETICS IN THE GASTROINTESTINAL TRACT OF MAN. II. CELL RENEWAL IN STOMACH, ILEUM, COLON, AND RECTUM. Gastroenterology. 1963 Dec;45:721–729. [PubMed] [Google Scholar]
  18. Lellé R. J., Heidenreich W., Stauch G., Gerdes J. The correlation of growth fractions with histologic grading and lymph node status in human mammary carcinoma. Cancer. 1987 Jan 1;59(1):83–88. doi: 10.1002/1097-0142(19870101)59:1<83::aid-cncr2820590119>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  19. Lipkin M., Bell B., Sherlock P. CELL PROLIFERATION KINETICS IN THE GASTROINTESTINAL TRACT OF MAN. I. CELL RENEWAL IN COLON AND RECTUM. J Clin Invest. 1963 Jun;42(6):767–776. doi: 10.1172/JCI104769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lyons R. M., Moses H. L. Transforming growth factors and the regulation of cell proliferation. Eur J Biochem. 1990 Feb 14;187(3):467–473. doi: 10.1111/j.1432-1033.1990.tb15327.x. [DOI] [PubMed] [Google Scholar]
  21. MENDELSOHN M. L. Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction. J Natl Cancer Inst. 1962 May;28:1015–1029. [PubMed] [Google Scholar]
  22. Mann G. J., Dyne M., Musgrove E. A. Immunofluorescent quantification of ribonucleotide reductase M1 subunit and correlation with DNA content by flow cytometry. Cytometry. 1987 Sep;8(5):509–517. doi: 10.1002/cyto.990080512. [DOI] [PubMed] [Google Scholar]
  23. Mann G. J., Musgrove E. A., Fox R. M., Thelander L. Ribonucleotide reductase M1 subunit in cellular proliferation, quiescence, and differentiation. Cancer Res. 1988 Sep 15;48(18):5151–5156. [PubMed] [Google Scholar]
  24. McDivitt R. W., Stone K. R., Craig R. B., Meyer J. S. A comparison of human breast cancer cell kinetics measured by flow cytometry and thymidine labeling. Lab Invest. 1985 Mar;52(3):287–291. [PubMed] [Google Scholar]
  25. Meyer J. S. Cell kinetic measurements of human tumors. Hum Pathol. 1982 Oct;13(10):874–877. doi: 10.1016/s0046-8177(82)80045-2. [DOI] [PubMed] [Google Scholar]
  26. Meyer J. S., Prey M. U., Babcock D. S., McDivitt R. W. Breast carcinoma cell kinetics, morphology, stage, and host characteristics. A thymidine labeling study. Lab Invest. 1986 Jan;54(1):41–51. [PubMed] [Google Scholar]
  27. Meyer J. S., Prioleau P. G. S-phase fractions of colorectal carcinomas related to pathologic and clinical features. Cancer. 1981 Sep 1;48(5):1221–1228. doi: 10.1002/1097-0142(19810901)48:5<1221::aid-cncr2820480528>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  28. Osborne C. K., Boldt D. H., Clark G. M., Trent J. M. Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res. 1983 Aug;43(8):3583–3585. [PubMed] [Google Scholar]
  29. Osborne C. K., Boldt D. H., Estrada P. Human breast cancer cell cycle synchronization by estrogens and antiestrogens in culture. Cancer Res. 1984 Apr;44(4):1433–1439. [PubMed] [Google Scholar]
  30. Prescott D. M. Cell reproduction. Int Rev Cytol. 1987;100:93–128. doi: 10.1016/s0074-7696(08)61699-x. [DOI] [PubMed] [Google Scholar]
  31. QUASTLER H., SHERMAN F. G. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res. 1959 Jun;17(3):420–438. doi: 10.1016/0014-4827(59)90063-1. [DOI] [PubMed] [Google Scholar]
  32. Raymond W. A., Leong A. S., Bolt J. W., Milios J., Jose J. S. Growth fractions in human prostatic carcinoma determined by Ki-67 immunostaining. J Pathol. 1988 Oct;156(2):161–167. doi: 10.1002/path.1711560211. [DOI] [PubMed] [Google Scholar]
  33. Reed J. C., Alpers J. D., Nowell P. C., Hoover R. G. Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3982–3986. doi: 10.1073/pnas.83.11.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SHORTER R. G., MOERTEL C. G., TITUS J. L., REITEMEIER R. J. CELL KINETICS IN THE JEJUNUM AND RECTUM OF MAN. Am J Dig Dis. 1964 Nov;9:760–763. doi: 10.1007/BF02231983. [DOI] [PubMed] [Google Scholar]
  35. Simony J., Pujol J. L., Radal M., Ursule E., Michel F. B., Pujol H. In situ evaluation of growth fraction determined by monoclonal antibody Ki-67 and ploidy in surgically resected non-small cell lung cancers. Cancer Res. 1990 Jul 15;50(14):4382–4387. [PubMed] [Google Scholar]
  36. Soule H. D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973 Nov;51(5):1409–1416. doi: 10.1093/jnci/51.5.1409. [DOI] [PubMed] [Google Scholar]
  37. Straus M. J., Moran R. E. The cell cycle kinetics of human breast cancer. Cancer. 1980 Dec 15;46(12):2634–2639. doi: 10.1002/1097-0142(19801215)46:12<2634::aid-cncr2820461217>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  38. Tannock I. Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep. 1978 Aug;62(8):1117–1133. [PubMed] [Google Scholar]
  39. Thor A., Horan Hand P., Wunderlich D., Caruso A., Muraro R., Schlom J. Monoclonal antibodies define differential ras gene expression in malignant and benign colonic diseases. Nature. 1984 Oct 11;311(5986):562–565. doi: 10.1038/311562a0. [DOI] [PubMed] [Google Scholar]
  40. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  41. Wynford-Thomas D., Williams E. D. Use of bromodeoxyuridine for cell kinetic studies in intact animals. Cell Tissue Kinet. 1986 Mar;19(2):179–182. doi: 10.1111/j.1365-2184.1986.tb00728.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES