Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Feb;87(2):536–544. doi: 10.1172/JCI115028

Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia.

E A Brinton 1, S Eisenberg 1, J L Breslow 1
PMCID: PMC296341  PMID: 1899429

Abstract

Low HDL-cholesterol (HDL-C) levels may elevate atherosclerosis risk, and often associate with hypertriglyceridemia (HTG); however, the metabolic causes of low HDL-C levels with or without HTG are poorly understood. We studied the turnover of radioiodinated HDL apolipoproteins, apo A-I and apo A-II, in 15 human subjects with low HDL-C, six with normal plasma TG levels (group 1) and nine with high TG (group 2), and compared them to 13 control subjects with normal HDL-C and TG levels (group 3). The fractional catabolic rate (FCR) was equally elevated in groups 1 and 2 vs. group 3 for both apo A-I (0.313 +/- 0.052 and 0.323 +/- 0.063 vs. 0.245 +/- 0.043 pools/d, P = 0.003) and apo A-II (0.213 +/- 0.036 and 0.239 +/- 0.037 vs. 0.185 +/- 0.031 pools/d, P = 0.006). Thus, high FCR characterized low HDL-C regardless of the presence or absence of HTG. In contrast, transport rate (TR) of apo A-I did not differ significantly among the groups and the apo A-II TR differed only between groups 2 and 3 (2.15 +/- 0.57, 2.50 +/- 0.39, and 1.83 +/- 0.48 mg/kg per d for groups 1 to 3, respectively, P = 0.016). Several HDL-related factors were similar in groups 1 and 2 but differed in group 3, as with FCR, including the ratio of lipoprotein lipase to hepatic lipase activity (LPL/HL) in post-heparin plasma, the ratio of the HDL-C to apo A-I plus apo A-II levels, and the percent of tracer in the d greater than 1.21 fraction. In linear regression analysis HDL-C levels correlated inversely with the FCR of apo A-I and apo A-II (r = -0.74, P less than 0.0001 for both). Major correlates of FCR were HDL-C/apo A-I + apo A-II, LPL/HL, and plasma TG levels. We hypothesize that lipase activity and plasma TG affect HDL composition which modulates FCR, which in turn regulates HDL-C. Thus, HTG is only one of several factors which may contribute to elevated FCR and low HDL-C. Given the relationship of altered HDL composition with high FCR and low HDL-C levels, factors affecting HDL composition may increase atherosclerosis susceptibility.

Full text

PDF
536

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum C. B., Levy R. I., Eisenberg S., Hall M., 3rd, Goebel R. H., Berman M. High density lipoprotein metabolism in man. J Clin Invest. 1977 Oct;60(4):795–807. doi: 10.1172/JCI108833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinton E. A., Eisenberg S., Breslow J. L. A low-fat diet decreases high density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates. J Clin Invest. 1990 Jan;85(1):144–151. doi: 10.1172/JCI114405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinton E. A., Eisenberg S., Breslow J. L. Elevated high density lipoprotein cholesterol levels correlate with decreased apolipoprotein A-I and A-II fractional catabolic rate in women. J Clin Invest. 1989 Jul;84(1):262–269. doi: 10.1172/JCI114149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheung M. C., Albers J. J. Distribution of cholesterol and apolipoprotein A-I and A-II in human high density lipoprotein subfractions separated by CsCl equilibrium gradient centrifugation: evidence for HDL subpopulations with differing A-I/A-II molar ratios. J Lipid Res. 1979 Feb;20(2):200–207. [PubMed] [Google Scholar]
  5. Cheung M. C., Albers J. J. The measurement of apolipoprotein A-I and A-II levels in men and women by immunoassay. J Clin Invest. 1977 Jul;60(1):43–50. doi: 10.1172/JCI108767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenberg S. High density lipoprotein metabolism. J Lipid Res. 1984 Oct;25(10):1017–1058. [PubMed] [Google Scholar]
  7. Kuusi T., Ehnholm C., Viikari J., Härkönen R., Vartiainen E., Puska P., Taskinen M. R. Postheparin plasma lipoprotein and hepatic lipase are determinants of hypo- and hyperalphalipoproteinemia. J Lipid Res. 1989 Aug;30(8):1117–1126. [PubMed] [Google Scholar]
  8. Le N. A., Ginsberg H. N. Heterogeneity of apolipoprotein A-I turnover in subjects with reduced concentrations of plasma high density lipoprotein cholesterol. Metabolism. 1988 Jul;37(7):614–617. doi: 10.1016/0026-0495(88)90077-7. [DOI] [PubMed] [Google Scholar]
  9. MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
  10. Mahalko J. R., Johnson L. K. Accuracy of predictions of long-term energy needs. J Am Diet Assoc. 1980 Nov;77(5):557–561. [PubMed] [Google Scholar]
  11. Malmendier C. L., Delcroix C., Ameryckx J. P. In vivo metabolism of human apoprotein A-I-phospholipid complexes. Comparison with human high density lipoprotein-apoprotein A-I metabolism. Clin Chim Acta. 1983 Jul 15;131(3):201–210. doi: 10.1016/0009-8981(83)90089-x. [DOI] [PubMed] [Google Scholar]
  12. Melchior G. W., Castle C. K., Vidmar T. J., Polites H. G., Marotti K. R. Apo A-I metabolism in cynomolgus monkeys: male-female differences. Biochim Biophys Acta. 1990 Mar 12;1043(1):97–105. doi: 10.1016/0005-2760(90)90115-e. [DOI] [PubMed] [Google Scholar]
  13. Miller G. J., Miller N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975 Jan 4;1(7897):16–19. doi: 10.1016/s0140-6736(75)92376-4. [DOI] [PubMed] [Google Scholar]
  14. Packard C. J., Stewart J. M., Third J. L., Morgan H. G., Lawrie T. D., Shepherd J. Effects of nicotinic acid therapy on high-density lipoprotein metabolism in type II and type IV hyperlipoproteinaemia. Biochim Biophys Acta. 1980 Apr 18;618(1):53–62. doi: 10.1016/0005-2760(80)90053-3. [DOI] [PubMed] [Google Scholar]
  15. Rao S. N., Magill P. J., Miller N. E., Lewis B. Plasma high-density lipoprotein metabolism in subjects with primary hypertriglyceridaemia: altered metabolism of apoproteins AI and AII. Clin Sci (Lond) 1980 Nov;59(5):359–367. doi: 10.1042/cs0590359. [DOI] [PubMed] [Google Scholar]
  16. Saku K., Gartside P. S., Hynd B. A., Mendoza S. G., Kashyap M. L. Apolipoprotein AI and AII metabolism in patients with primary high-density lipoprotein deficiency associated with familial hypertriglyceridemia. Metabolism. 1985 Aug;34(8):754–764. doi: 10.1016/0026-0495(85)90027-7. [DOI] [PubMed] [Google Scholar]
  17. Schaefer E. J., Zech L. A., Jenkins L. L., Bronzert T. J., Rubalcaba E. A., Lindgren F. T., Aamodt R. L., Brewer H. B., Jr Human apolipoprotein A-I and A-II metabolism. J Lipid Res. 1982 Aug;23(6):850–862. [PubMed] [Google Scholar]
  18. Zech L. A., Schaefer E. J., Bronzert T. J., Aamodt R. L., Brewer H. B., Jr Metabolism of human apolipoproteins A-I and A-II: compartmental models. J Lipid Res. 1983 Jan;24(1):60–71. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES