Abstract
The regulation of protein metabolism in the human heart has not previously been studied. In 10 postabsorptive patients with coronary artery disease, heart protein synthesis and degradation were estimated simultaneously from the extraction of intravenously infused L-[ring-2,6-3H]phenylalanine (PHE) and the dilution of its specific activity across the heart at isotopic steady state. We subsequently examined the effect of branched chain amino acid (BCAA) infusion on heart protein turnover and on the myocardial balance of amino acids and branched chain ketoacids (BCKA) in these patients. In the postabsorptive state, there was a net release of phenylalanine (arterial-cardiac venous [PHE] = -1.71 +/- 0.32 nmol/ml, P less than 0.001; balance = -116 +/- 21 nmol PHE/min, P less than 0.001), reflecting protein degradation (142 +/- 40 nmol PHE/min) in excess of synthesis (24 +/- 42 nmol PHE/min) and net myocardial protein catabolism. During BCAA infusion, protein synthesis increased to equal the degradation rate (106 +/- 24 and 106 +/- 28 nmol PHE/min, respectively) and the phenylalanine balance shifted (P = 0.01) from negative to neutral (arterial-cardiac venous [PHE] = 0.07 +/- 0.36 nmol/ml; balance = 2 +/- 25 nmol PHE/min). BCAA infusion stimulated the myocardial uptake of both BCAA (P less than 0.005) and their ketoacid conjugates (P less than 0.001) in proportion to their circulating concentrations. Net uptake of the BCAA greatly exceeded that of other essential amino acids suggesting a role for BCAA and BCKA as metabolic fuels. Plasma insulin levels, cardiac double product, coronary blood flow, and myocardial oxygen consumption were unchanged. These results demonstrate that the myocardium of postabsorptive humans is in negative protein balance and indicate a primary anabolic effect of BCAA on the human heart.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abumrad N. N., Rabin D., Wise K. L., Lacy W. W. The disposal of an intravenously administered amino acid load across the human forearm. Metabolism. 1982 May;31(5):463–470. doi: 10.1016/0026-0495(82)90235-9. [DOI] [PubMed] [Google Scholar]
- Barrett E. J., Gelfand R. A. The in vivo study of cardiac and skeletal muscle protein turnover. Diabetes Metab Rev. 1989 Mar;5(2):133–148. doi: 10.1002/dmr.5610050204. [DOI] [PubMed] [Google Scholar]
- Barrett E. J., Revkin J. H., Young L. H., Zaret B. L., Jacob R., Gelfand R. A. An isotopic method for measurement of muscle protein synthesis and degradation in vivo. Biochem J. 1987 Jul 1;245(1):223–228. doi: 10.1042/bj2450223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodan V., Fabián J., Andel M., Pechar J. Myocardial amino acid metabolism in patients with chronic ischemic heart disease. Basic Res Cardiol. 1978 Mar-Apr;73(2):160–170. doi: 10.1007/BF01906751. [DOI] [PubMed] [Google Scholar]
- Buse M. G., Herlong H. F., Weigand D. A. The effect of diabetes, insulin, and the redox potential on leucine metabolism by isolated rat hemidiaphragm. Endocrinology. 1976 May;98(5):1166–1175. doi: 10.1210/endo-98-5-1166. [DOI] [PubMed] [Google Scholar]
- Buse M. G. In vivo effects of branched chain amino acids on muscle protein synthesis in fasted rats. Horm Metab Res. 1981 Sep;13(9):502–505. doi: 10.1055/s-2007-1019316. [DOI] [PubMed] [Google Scholar]
- CARLSTEN A., HALLGREN B., JAGENBURG R., SVANBORG A., WERKO L. Myocardial metabolism of glucose, lactic acid, amino acids and fatty acids in healthy human individuals at rest and at different work loads. Scand J Clin Lab Invest. 1961;13:418–428. [PubMed] [Google Scholar]
- Chua B. H., Siehl D. L., Morgan H. E. A role for leucine in regulation of protein turnover in working rat hearts. Am J Physiol. 1980 Dec;239(6):E510–E514. doi: 10.1152/ajpendo.1980.239.6.E510. [DOI] [PubMed] [Google Scholar]
- Curfman G. D., O'Hara D. S., Hopkins B. E., Smith T. W. Suppression of myocardial protein degradation in the rat during fasting. Effects of insulin, glucose, and leucine. Circ Res. 1980 Apr;46(4):581–589. doi: 10.1161/01.res.46.4.581. [DOI] [PubMed] [Google Scholar]
- Dillmann W. H., Mehta H. B., Barrieux A., Guth B. D., Neeley W. E., Ross J., Jr Ischemia of the dog heart induces the appearance of a cardiac mRNA coding for a protein with migration characteristics similar to heat-shock/stress protein 71. Circ Res. 1986 Jul;59(1):110–114. doi: 10.1161/01.res.59.1.110. [DOI] [PubMed] [Google Scholar]
- Everett A. W., Taylor R. R., Sparrow M. P. Protein synthesis during right-ventricular hypertrophy after pulmonary-artery stenosis in the dog. Biochem J. 1977 Sep 15;166(3):315–321. doi: 10.1042/bj1660315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulks R. M., Li J. B., Goldberg A. L. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem. 1975 Jan 10;250(1):290–298. [PubMed] [Google Scholar]
- Garlick P. J., Grant I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J. 1988 Sep 1;254(2):579–584. doi: 10.1042/bj2540579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
- Gelfand R. A., Barrett E. J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987 Jul;80(1):1–6. doi: 10.1172/JCI113033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelfand R. A., Glickman M. G., Jacob R., Sherwin R. S., DeFronzo R. A. Removal of infused amino acids by splanchnic and leg tissues in humans. Am J Physiol. 1986 Apr;250(4 Pt 1):E407–E413. doi: 10.1152/ajpendo.1986.250.4.E407. [DOI] [PubMed] [Google Scholar]
- Goodman M. N., Lowell B., Belur E., Ruderman N. B. Sites of protein conservation and loss during starvation: influence of adiposity. Am J Physiol. 1984 May;246(5 Pt 1):E383–E390. doi: 10.1152/ajpendo.1984.246.5.E383. [DOI] [PubMed] [Google Scholar]
- Ichihara K., Neely J. R., Siehl D. L., Morgan H. E. Utilization of leucine by working rat heart. Am J Physiol. 1980 Dec;239(6):E430–E436. doi: 10.1152/ajpendo.1980.239.6.E430. [DOI] [PubMed] [Google Scholar]
- Kao R., Rannels D. E., Morgan H. E. Effects of anoxia and ischemia on protein synthesis in perfused rat hearts. Circ Res. 1976 May;38(5 Suppl 1):I124–I130. [PubMed] [Google Scholar]
- Lazar H. L., Buckberg G. D., Manganaro A. M., Becker H. Myocardial energy replenishment and reversal of ischemic damage by substrate enhancement of secondary blood cardioplegia with amino acids during reperfusion. J Thorac Cardiovasc Surg. 1980 Sep;80(3):350–359. [PubMed] [Google Scholar]
- Li J. B., Goldberg A. L. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol. 1976 Aug;231(2):441–448. doi: 10.1152/ajplegacy.1976.231.2.441. [DOI] [PubMed] [Google Scholar]
- May R. C., Mitch W. E. The metabolism and metabolic effects of ketoacids. Diabetes Metab Rev. 1989 Feb;5(1):71–82. doi: 10.1002/dmr.5610050106. [DOI] [PubMed] [Google Scholar]
- McNurlan M. A., Fern E. B., Garlick P. J. Failure of leucine to stimulate protein synthesis in vivo. Biochem J. 1982 Jun 15;204(3):831–838. doi: 10.1042/bj2040831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mudge G. H., Jr, Mills R. M., Jr, Taegtmeyer H., Gorlin R., Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest. 1976 Nov;58(5):1185–1192. doi: 10.1172/JCI108571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nissen S. L., Van Huysen C., Haymond M. W. Measurement of branched chain amino acids and branched chain alpha-ketoacids in plasma by high-performance liquid chromatography. J Chromatogr. 1982 Oct 8;232(1):170–175. doi: 10.1016/s0378-4347(00)86021-1. [DOI] [PubMed] [Google Scholar]
- Preedy V. R., Smith D. M., Kearney N. F., Sugden P. H. Rates of protein turnover in vivo and in vitro in ventricular muscle of hearts from fed and starved rats. Biochem J. 1984 Sep 1;222(2):395–400. doi: 10.1042/bj2220395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revkin J. H., Young L. H., Stirewalt W. S., Dahl D. M., Gelfand R. A., Zaret B. L., Barrett E. J. In vivo measurement of myocardial protein turnover using an indicator dilution technique. Circ Res. 1990 Oct;67(4):902–912. doi: 10.1161/01.res.67.4.902. [DOI] [PubMed] [Google Scholar]
- Samarel A. M., Parmacek M. S., Magid N. M., Decker R. S., Lesch M. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits. Circ Res. 1987 Jun;60(6):933–941. doi: 10.1161/01.res.60.6.933. [DOI] [PubMed] [Google Scholar]
- Schwartz R. G., Barrett E. J., Francis C. K., Jacob R., Zaret B. L. Regulation of myocardial amino acid balance in the conscious dog. J Clin Invest. 1985 Apr;75(4):1204–1211. doi: 10.1172/JCI111817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwenk W. F., Haymond M. W. Effects of leucine, isoleucine, or threonine infusion on leucine metabolism in humans. Am J Physiol. 1987 Oct;253(4 Pt 1):E428–E434. doi: 10.1152/ajpendo.1987.253.4.E428. [DOI] [PubMed] [Google Scholar]
- Takala T., Hiltunen J. K., Hassinen I. E. The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart. Biochem J. 1980 Oct 15;192(1):285–295. doi: 10.1042/bj1920285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomassen A., Bagger J. P., Nielsen T. T., Henningsen P. Altered global myocardial substrate preference at rest and during pacing in coronary artery disease with stable angina pectoris. Am J Cardiol. 1988 Oct 1;62(10 Pt 1):686–693. doi: 10.1016/0002-9149(88)91203-9. [DOI] [PubMed] [Google Scholar]
- Thompson G. N., Pacy P. J., Merritt H., Ford G. C., Read M. A., Cheng K. N., Halliday D. Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Physiol. 1989 May;256(5 Pt 1):E631–E639. doi: 10.1152/ajpendo.1989.256.5.E631. [DOI] [PubMed] [Google Scholar]
- Tischler M. E., Desautels M., Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
- Watanabe T. Significance of ammonia in myocardial metabolism. Jpn Circ J. 1968 Dec;32(12 Suppl):1811–1814. doi: 10.1253/jcj.32.1811. [DOI] [PubMed] [Google Scholar]
- Zähringer J., Pritzl N., Geheeb E., Stäb G. Influence of starvation and total protein deprivation on cardiac mRNA levels. Basic Res Cardiol. 1985 Jan-Feb;80(1):1–11. doi: 10.1007/BF01906738. [DOI] [PubMed] [Google Scholar]


