Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Feb;87(2):571–580. doi: 10.1172/JCI115032

Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment.

M T Santos 1, J Valles 1, A J Marcus 1, L B Safier 1, M J Broekman 1, N Islam 1, H L Ullman 1, A M Eiroa 1, J Aznar 1
PMCID: PMC296345  PMID: 1991840

Abstract

Erythrocytes are known to influence hemostasis. Bleeding times are prolonged in anemia and corrected by normalizing the hematocrit. We now demonstrate that intact erythrocytes modulate biochemical and functional responsiveness of activated platelets. A two-stage procedure, permitting studies of cell-cell interactions and independently evaluating platelet activation and recruitment within 1 min of stimulation, was developed. Erythrocytes increased platelet serotonin release despite aspirin treatment, enzymatic adenosine diphosphate removal, protease inhibition, or combinations thereof. The data suggested that erythrocyte enhancement of platelet reactivity can reduce the therapeutic effectiveness of aspirin. Erythrocytes metabolically modified platelet arachidonate or eicosapentaenoate release and eicosanoid formation. They promoted significant increases in cyclooxygenase and lipoxygenase metabolites upon platelet stimulation with collagen or thrombin. However, with ionophore, erythrocytes strongly reduced platelet lipoxygenation. These erythrocyte modulatory effects were stimulus-specific. Activated platelet-erythrocyte mixtures, with or without aspirin, promoted 3-10-fold increases in extracellular free fatty acid, which would be available for transcellular metabolism. Erythrocyte-induced increases in free eicosapentaenoate may contribute to antithrombotic and anti-inflammatory effects of this fish oil derivative. These results provide biochemical insight into erythrocyte contributions to thrombosis and hemostasis, and support the concept of thrombus formation as a multicellular event.

Full text

PDF
571

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Michell R. H. Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature. 1975 Nov 27;258(5533):348–349. doi: 10.1038/258348a0. [DOI] [PubMed] [Google Scholar]
  2. Aoki N., Naito K., Yoshida N. Inhibition of platelet aggregation by protease inhibitors. Possible involvement of proteases in platelet aggregation. Blood. 1978 Jul;52(1):1–12. [PubMed] [Google Scholar]
  3. Born G. V., Wehmeier A. Inhibition of platelet thrombus formation by chlorpromazine acting to diminish haemolysis. Nature. 1979 Nov 8;282(5735):212–213. doi: 10.1038/282212a0. [DOI] [PubMed] [Google Scholar]
  4. Egan R. W., Paxton J., Kuehl F. A., Jr Mechanism for irreversible self-deactivation of prostaglandin synthetase. J Biol Chem. 1976 Dec 10;251(23):7329–7335. [PubMed] [Google Scholar]
  5. Fischer S., von Schacky C., Siess W., Strasser T., Weber P. C. Uptake, release and metabolism of docosahexaenoic acid (DHA, c22:6 omega 3) in human platelets and neutrophils. Biochem Biophys Res Commun. 1984 May 16;120(3):907–918. doi: 10.1016/s0006-291x(84)80193-x. [DOI] [PubMed] [Google Scholar]
  6. Fox J. E., Reynolds C. C., Phillips D. R. Calcium-dependent proteolysis occurs during platelet aggregation. J Biol Chem. 1983 Aug 25;258(16):9973–9981. [PubMed] [Google Scholar]
  7. HELLEM A. J., BORCHGREVINK C. F., AMES S. B. The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol. 1961 Jan;7:42–50. doi: 10.1111/j.1365-2141.1961.tb00318.x. [DOI] [PubMed] [Google Scholar]
  8. Hamberg M. Transformations of 5,8,11,14,17-eicosapentaenoic acid in human platelets. Biochim Biophys Acta. 1980 Jun 23;618(3):389–398. doi: 10.1016/0005-2760(80)90257-x. [DOI] [PubMed] [Google Scholar]
  9. Kroll M. H., Schafer A. I. Biochemical mechanisms of platelet activation. Blood. 1989 Sep;74(4):1181–1195. [PubMed] [Google Scholar]
  10. Leaf A., Weber P. C. Cardiovascular effects of n-3 fatty acids. N Engl J Med. 1988 Mar 3;318(9):549–557. doi: 10.1056/NEJM198803033180905. [DOI] [PubMed] [Google Scholar]
  11. Lorand L., Barnes N., Bruner-Lorand J. A., Hawkins M., Michalska M. Inhibition of protein cross-linking in Ca2+-enriched human erythrocytes and activated platelets. Biochemistry. 1987 Jan 13;26(1):308–313. doi: 10.1021/bi00375a043. [DOI] [PubMed] [Google Scholar]
  12. Marcus A. J. Eicosanoid interactions between platelets, endothelial cells, and neutrophils. Methods Enzymol. 1990;187:585–599. doi: 10.1016/0076-6879(90)87066-c. [DOI] [PubMed] [Google Scholar]
  13. Marcus A. J., Zucker-Franklin D., Safier L. B., Ullman H. L. Studies on human platelet granules and membranes. J Clin Invest. 1966 Jan;45(1):14–28. doi: 10.1172/JCI105318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Needleman P., Raz A., Minkes M. S., Ferrendelli J. A., Sprecher H. Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci U S A. 1979 Feb;76(2):944–948. doi: 10.1073/pnas.76.2.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pérez-Requejo J. L., Aznar J., Santos M. T., Vallés J. Early platelet-collagen interactions in whole blood and their modifications by aspirin and dipyridamole evaluated by a new method (BASIC wave). Thromb Haemost. 1985 Dec 17;54(4):799–803. [PubMed] [Google Scholar]
  16. Reimers R. C., Sutera S. P., Joist J. H. Potentiation by red blood cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms. Blood. 1984 Dec;64(6):1200–1206. [PubMed] [Google Scholar]
  17. Rittenhouse S. E., Allen C. L. Synergistic activation by collagen and 15-hydroxy-9 alpha,11 alpha-peroxidoprosta-5,13-dienoic acid (PGH2) of phosphatidylinositol metabolism and arachidonic acid release in human platelets. J Clin Invest. 1982 Dec;70(6):1216–1224. doi: 10.1172/JCI110720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Santos M. T., Vallés J., Aznar J., Pérez-Requejo J. L. Role of red blood cells in the early stages of platelet activation by collagen. Thromb Haemost. 1986 Dec 15;56(3):376–381. [PubMed] [Google Scholar]
  19. Sautebin L., Caruso D., Galli G., Paoletti R. Preferential utilization of endogenous arachidonate by cyclo-oxygenase in incubations of human platelets. FEBS Lett. 1983 Jun 27;157(1):173–178. doi: 10.1016/0014-5793(83)81140-5. [DOI] [PubMed] [Google Scholar]
  20. Siess W., Siegel F. L., Lapetina E. G. Dihomogammalinolenic acid, but not eicosapentaenoic acid, activates washed human platelets. Biochim Biophys Acta. 1984 Sep 28;801(2):265–276. doi: 10.1016/0304-4165(84)90076-x. [DOI] [PubMed] [Google Scholar]
  21. Takenaga M., Hirai A., Terano T., Tamura Y., Kitagawa H., Yoshida S. Comparison of the in vitro effect of eicosapentaenoic acid (EPA)-derived lipoxygenase metabolites on human platelet function with those of arachidonic acid. Thromb Res. 1986 Feb 1;41(3):373–384. doi: 10.1016/0049-3848(86)90248-3. [DOI] [PubMed] [Google Scholar]
  22. Vedelago H. R., Mahadevappa V. G. Mobilization of arachidonic acid in collagen-stimulated human platelets. Biochem J. 1988 Dec 15;256(3):981–987. doi: 10.1042/bj2560981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Walenga R., Vanderhoek J. Y., Feinstein M. B. Serine esterase inhibitors block stimulus-induced mobilization of arachidonic acid and phosphatidylinositide-specific phospholipase C activity in platelets. J Biol Chem. 1980 Jul 10;255(13):6024–6027. [PubMed] [Google Scholar]
  24. Watson S. P., McNally J., Shipman L. J., Godfrey P. P. The action of the protein kinase C inhibitor, staurosporine, on human platelets. Evidence against a regulatory role for protein kinase C in the formation of inositol trisphosphate by thrombin. Biochem J. 1988 Jan 15;249(2):345–350. doi: 10.1042/bj2490345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. von Schacky C., Marcus A. J., Safier L. B., Ullman H. L., Islam N., Broekman M. J., Fischer S. Platelet-neutrophil interactions. 12S,20- and 5S,12S-dihydroxyeicosapentaenoic acids: two novel neutrophil metabolites from platelet-derived 12S-hydroxyeicosapentaenoic acid. J Lipid Res. 1990 May;31(5):801–810. [PubMed] [Google Scholar]
  26. von Schacky C. Prophylaxis of atherosclerosis with marine omega-3 fatty acids. A comprehensive strategy. Ann Intern Med. 1987 Dec;107(6):890–899. doi: 10.7326/0003-4819-107-6-890. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES