Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Feb;87(2):673–679. doi: 10.1172/JCI115045

Defective insulin response of cyclic adenosine monophosphate-dependent protein kinase in insulin-resistant humans.

Y Kida 1, B L Nyomba 1, C Bogardus 1, D M Mott 1
PMCID: PMC296358  PMID: 1846879

Abstract

Insulin-stimulated glycogen synthase activity in human muscle correlates with insulin-mediated glucose disposal and is reduced in insulin-resistant subjects. Inhibition of the cyclic AMP-dependent protein kinase (A-kinase) is considered as a possible mechanism of insulin action for glycogen synthase activation. In this study, we investigated the time course of insulin action on human muscle A-kinase activity during a 2-h insulin infusion in 13 insulin-sensitive (group S) and 7 insulin-resistant subjects (group R). Muscle biopsies were obtained from quadriceps femoris muscle at times 0, 10, 20, 40, and 120 min. Insulin infusion resulted in significant inhibition of A-kinase activity at 20 and/or 40 min using 0.2, 0.6, and 1.0 microM cyclic AMP in group S. A-kinase activities both before and after insulin administration were lower in group S than in group R using 0.6 microM cyclic AMP. The decrease in apparent affinity for cyclic AMP during insulin infusion was larger for group S compared with group R. Glycogen synthase activity increased significantly after insulin infusion in both groups and was higher in group S compared with group R. The data suggest that a defective response of A-kinase to insulin in insulin-resistant subjects could contribute to their reduced insulin stimulation of skeletal muscle glycogen synthase.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogardus C., Lillioja S., Stone K., Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984 Apr;73(4):1185–1190. doi: 10.1172/JCI111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bollen M., Stalmans W. Fluorine compounds inhibit the conversion of active type-1 protein phosphatases into the ATPMg-dependent form. Biochem J. 1988 Oct 1;255(1):327–333. [PMC free article] [PubMed] [Google Scholar]
  3. Chang L. Y., Huang L. C. Effects of insulin treatment on the activities of phosphoprotein phosphatase and its inhibitors. Acta Endocrinol (Copenh) 1980 Nov;95(3):427–432. doi: 10.1530/acta.0.0950427. [DOI] [PubMed] [Google Scholar]
  4. Chasiotis D., Hultman E. The effect of adrenaline infusion on the regulation of glycogenolysis in human muscle during isometric contraction. Acta Physiol Scand. 1985 Jan;123(1):55–60. doi: 10.1111/j.1748-1716.1985.tb07560.x. [DOI] [PubMed] [Google Scholar]
  5. Cheng K., Larner J. Intracellular mediators of insulin action. Annu Rev Physiol. 1985;47:405–424. doi: 10.1146/annurev.ph.47.030185.002201. [DOI] [PubMed] [Google Scholar]
  6. Cheng K., Thompson M., Craig J., Schwartz C., Locher E., Larner J. Cell membrane signals in the mechanism of insulin action. Claude P. Brown memorial lecture. Ann Clin Lab Sci. 1984 Jan-Feb;14(1):78–89. [PubMed] [Google Scholar]
  7. Cherrington A. D., Assimacopoulos F. D., Harper S. C., Corbin J. D., Park C. R., Exton J. H. Studies on the alpha-andrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes. J Biol Chem. 1976 Sep 10;251(17):5209–5218. [PubMed] [Google Scholar]
  8. Chiasson J. L., Dietz M. R., Shikama H., Wootten M., Exton J. H. Insulin regulation of skeletal muscle glycogen metabolism. Am J Physiol. 1980 Jul;239(1):E69–E74. doi: 10.1152/ajpendo.1980.239.1.E69. [DOI] [PubMed] [Google Scholar]
  9. Ciudad C. J., Vila J., Mor M. A., Guinovart J. J. Effects of glucagon and insulin on the cyclic AMP binding capacity of hepatocyte cyclic AMP-dependent protein kinase. Mol Cell Biochem. 1987 Jan;73(1):37–44. doi: 10.1007/BF00229374. [DOI] [PubMed] [Google Scholar]
  10. Cohen P. Protein phosphorylation and the control of glycogen metabolism in skeletal muscle. Philos Trans R Soc Lond B Biol Sci. 1983 Jul 5;302(1108):13–25. doi: 10.1098/rstb.1983.0034. [DOI] [PubMed] [Google Scholar]
  11. Cohen P. The role of cyclic-AMP-dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle. Curr Top Cell Regul. 1978;14:117–196. doi: 10.1016/b978-0-12-152814-0.50008-3. [DOI] [PubMed] [Google Scholar]
  12. Corbin J. D., Keely S. L., Park C. R. The distribution and dissociation of cyclic adenosine 3':5'-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem. 1975 Jan 10;250(1):218–225. [PubMed] [Google Scholar]
  13. Corbin J. D., Soderling T. R., Park C. R. Regulation of adenosine 3',5'-monophosphate-dependent protein kinase. I. Preliminary characterization of the adipose tissue enzyme in crude extracts. J Biol Chem. 1973 Mar 10;248(5):1813–1821. [PubMed] [Google Scholar]
  14. DANFORTH W. H. GLYCOGEN SYNTHETASE ACTIVITY IN SKELETAL MUSCLE. INTERCONVERSION OF TWO FORMS AND CONTROL OF GLYCOGEN SYNTHESIS. J Biol Chem. 1965 Feb;240:588–593. [PubMed] [Google Scholar]
  15. Embi N., Parker P. J., Cohen P. A reinvestigation of the phosphorylation of rabbit skeletal-muscle glycogen synthase by cyclic-AMP-dependent protein kinase. Identification of the third site of phosphorylation as serine-7. Eur J Biochem. 1981 Apr;115(2):405–413. doi: 10.1111/j.1432-1033.1981.tb05252.x. [DOI] [PubMed] [Google Scholar]
  16. Foulkes J. G., Cohen P., Strada S. J., Everson W. V., Jefferson L. S. Antagonistic effects of insulin and beta-adrenergic agonists on the activity of protein phosphatase inhibitor-1 in skeletal muscle of the perfused rat hemicorpus. J Biol Chem. 1982 Nov 10;257(21):12493–12496. [PubMed] [Google Scholar]
  17. Freymond D., Bogardus C., Okubo M., Stone K., Mott D. Impaired insulin-stimulated muscle glycogen synthase activation in vivo in man is related to low fasting glycogen synthase phosphatase activity. J Clin Invest. 1988 Nov;82(5):1503–1509. doi: 10.1172/JCI113758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gabbay R. A., Lardy H. A. Insulin inhibition of hepatic cAMP-dependent protein kinase: decreased affinity of protein kinase for cAMP and possible differential regulation of intrachain sites 1 and 2. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2218–2222. doi: 10.1073/pnas.84.8.2218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gottschalk W. K., Jarett L. Intracellular mediators of insulin action. Diabetes Metab Rev. 1985;1(3):229–259. doi: 10.1002/dmr.5610010302. [DOI] [PubMed] [Google Scholar]
  20. Guinovart J. J., Salavert A., Massagué J., Ciudad C. J., Salsas E., Itarte E. Glycogen synthase: a new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett. 1979 Oct 15;106(2):284–288. doi: 10.1016/0014-5793(79)80515-3. [DOI] [PubMed] [Google Scholar]
  21. Hemmings B. A., Yellowlees D., Kernohan J. C., Cohen P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Copurification with the activating factor (FA) of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem. 1981 Oct;119(3):443–451. doi: 10.1111/j.1432-1033.1981.tb05628.x. [DOI] [PubMed] [Google Scholar]
  22. Hiraga A., Cohen P. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. Eur J Biochem. 1986 Dec 15;161(3):763–769. doi: 10.1111/j.1432-1033.1986.tb10505.x. [DOI] [PubMed] [Google Scholar]
  23. Huang F. L., Glinsmann W. H. Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem. 1976 Nov 15;70(2):419–426. doi: 10.1111/j.1432-1033.1976.tb11032.x. [DOI] [PubMed] [Google Scholar]
  24. Ingebritsen T. S., Cohen P. Protein phosphatases: properties and role in cellular regulation. Science. 1983 Jul 22;221(4608):331–338. doi: 10.1126/science.6306765. [DOI] [PubMed] [Google Scholar]
  25. Jarett L., Kiechle F. L., Parker J. C., Macaulay S. L. The chemical mediators of insulin action: possible targets for postreceptor defects. Am J Med. 1983 Jan 17;74(1A):31–37. doi: 10.1016/0002-9343(83)90652-6. [DOI] [PubMed] [Google Scholar]
  26. Kida Y., Esposito-Del Puente A., Bogardus C., Mott D. M. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle. J Clin Invest. 1990 Feb;85(2):476–481. doi: 10.1172/JCI114462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Larner J., Galasko G., Cheng K., DePaoli-Roach A. A., Huang L., Daggy P., Kellogg J. Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science. 1979 Dec 21;206(4425):1408–1410. doi: 10.1126/science.228395. [DOI] [PubMed] [Google Scholar]
  28. Le Marchand-Brustel Y., Freychet P. Regulation of glycogen synthase activity in the isolated mouse soleus muscle. Effect of insulin, epinephrine, glucose and anti-insulin receptor antibodies. Biochim Biophys Acta. 1981 Sep 18;677(1):13–22. [PubMed] [Google Scholar]
  29. Lillioja S., Mott D. M., Zawadzki J. K., Young A. A., Abbott W. G., Bogardus C. Glucose storage is a major determinant of in vivo "insulin resistance" in subjects with normal glucose tolerance. J Clin Endocrinol Metab. 1986 May;62(5):922–927. doi: 10.1210/jcem-62-5-922. [DOI] [PubMed] [Google Scholar]
  30. Maller J. L., Kemp B. E., Krebs E. G. In vivo phosphorylation of a synthetic peptide substrate of cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1978 Jan;75(1):248–251. doi: 10.1073/pnas.75.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mandarino L. J., Wright K. S., Verity L. S., Nichols J., Bell J. M., Kolterman O. G., Beck-Nielsen H. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase. Evidence for their role in oxidative and nonoxidative glucose metabolism. J Clin Invest. 1987 Sep;80(3):655–663. doi: 10.1172/JCI113118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mor M. A., Vila J., Ciudad C. J., Guinovart J. J. Insulin inactivation of rat hepatocyte cyclic AMP-dependent protein kinase. FEBS Lett. 1981 Dec 21;136(1):131–134. doi: 10.1016/0014-5793(81)81230-6. [DOI] [PubMed] [Google Scholar]
  33. Okubo M., Bogardus C., Lillioja S., Mott D. M. Adenosine 3',5'-monophosphate-dependent protein kinase activity decreases in human muscle after insulin infusion. J Clin Endocrinol Metab. 1989 Oct;69(4):798–803. doi: 10.1210/jcem-69-4-798. [DOI] [PubMed] [Google Scholar]
  34. Okubo M., Bogardus C., Lillioja S., Mott D. M. Glucose-6-phosphate stimulation of human muscle glycogen synthase phosphatase. Metabolism. 1988 Dec;37(12):1171–1176. doi: 10.1016/0026-0495(88)90196-5. [DOI] [PubMed] [Google Scholar]
  35. Oron Y., Galasko G., Larner J. Insulin action in intact mouse diaphragm. II. Inhibition of endogenous protein phosphorylation. Mol Cell Biochem. 1980 Nov 20;32(3):161–167. doi: 10.1007/BF00227443. [DOI] [PubMed] [Google Scholar]
  36. Palmer W. K., McPherson J. M., Walsh D. A. Critical controls in the evaluation of cAMP-dependent protein kinase activity ratios as indices of hormonal action. J Biol Chem. 1980 Apr 10;255(7):2663–2666. [PubMed] [Google Scholar]
  37. Parker P. J., Caudwell F. B., Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem. 1983 Jan 17;130(1):227–234. doi: 10.1111/j.1432-1033.1983.tb07140.x. [DOI] [PubMed] [Google Scholar]
  38. Roach P. J., Larner J. Rabbit skeletal muscle glycogen synthase. II. Enzyme phosphorylation state and effector concentrations as interacting control parameters. J Biol Chem. 1976 Apr 10;251(7):1920–1925. [PubMed] [Google Scholar]
  39. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  40. Sheorain V. S., Corbin J. D., Soderling T. R. Phosphorylation of sites 3 and 4 in rabbit skeletal muscle glycogen synthase by cAMP-dependent protein kinase. J Biol Chem. 1985 Feb 10;260(3):1567–1572. [PubMed] [Google Scholar]
  41. Sheorain V. S., Juhl H., Bass M., Soderling T. R. Effects of epinephrine, diabetes, and insulin on rabbit skeletal muscle glycogen synthase. Phosphorylation site occupancies. J Biol Chem. 1984 Jun 10;259(11):7024–7030. [PubMed] [Google Scholar]
  42. Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
  43. Stalmans W., Bollen M., Mvumbi L. Control of glycogen synthesis in health and disease. Diabetes Metab Rev. 1987 Jan;3(1):127–161. doi: 10.1002/dmr.5610030107. [DOI] [PubMed] [Google Scholar]
  44. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  45. Thompson M. P., Larner J., Kilpatrick D. L. Purification and partial characterization of a putative mediator of insulin action on cyclic AMP-dependent protein kinase. Mol Cell Biochem. 1984 Apr;62(1):67–75. doi: 10.1007/BF00230079. [DOI] [PubMed] [Google Scholar]
  46. Tóth B., Bollen M., Stalmans W. Acute regulation of hepatic protein phosphatases by glucagon, insulin, and glucose. J Biol Chem. 1988 Oct 5;263(28):14061–14066. [PubMed] [Google Scholar]
  47. Vandenheede J. R., Yang S. D., Merlevede W., Jurgensen S., Chock P. B. Kinase FA-mediated regulation of rabbit skeletal muscle protein phosphatase. Reversible phosphorylation of the modulator subunit. J Biol Chem. 1985 Sep 5;260(19):10512–10516. [PubMed] [Google Scholar]
  48. Walaas O., Walaas E., Gronnerod O. Hormonal regulation of cyclic-AMP-dependent protein kinase of rat diaphragm by epinephrine and insulin. Eur J Biochem. 1973 Dec 17;40(2):465–477. doi: 10.1111/j.1432-1033.1973.tb03215.x. [DOI] [PubMed] [Google Scholar]
  49. Walkenbach R. J., Hazen R., Larner J. Hormonal regulation of glycogen synthase: insulin decreases protein kinase sensitivity to cyclic AMP. Biochim Biophys Acta. 1980 May 22;629(3):421–430. doi: 10.1016/0304-4165(80)90148-8. [DOI] [PubMed] [Google Scholar]
  50. Walkenbach R. J., Hazen R., Larner J. Reversible inhibition of cyclic AMP-dependent protein kinase by insulin. Mol Cell Biochem. 1978 Feb 24;19(1):31–41. doi: 10.1007/BF00231232. [DOI] [PubMed] [Google Scholar]
  51. Yang S. D., Ho L. T., Fung T. J. Insulin induces activation and translocation of protein kinase FA (a multifunctional protein phosphatase activator) in human platelet. Biochem Biophys Res Commun. 1988 Feb 29;151(1):61–69. doi: 10.1016/0006-291x(88)90559-1. [DOI] [PubMed] [Google Scholar]
  52. Yki-Järvinen H., Mott D., Young A. A., Stone K., Bogardus C. Regulation of glycogen synthase and phosphorylase activities by glucose and insulin in human skeletal muscle. J Clin Invest. 1987 Jul;80(1):95–100. doi: 10.1172/JCI113069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Young A. A., Bogardus C., Stone K., Mott D. M. Insulin response of components of whole-body and muscle carbohydrate metabolism in humans. Am J Physiol. 1988 Feb;254(2 Pt 1):E231–E236. doi: 10.1152/ajpendo.1988.254.2.E231. [DOI] [PubMed] [Google Scholar]
  54. Young A. A., Bogardus C., Wolfe-Lopez D., Mott D. M. Muscle glycogen synthesis and disposition of infused glucose in humans with reduced rates of insulin-mediated carbohydrate storage. Diabetes. 1988 Mar;37(3):303–308. doi: 10.2337/diab.37.3.303. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES