Abstract
To determine whether chronic hypoxemia secondary to an intracardiac right-to-left shunt alters regulation of the myocardial beta-adrenergic receptor/adenylate cyclase system, we produced chronic hypoxemia in nine newborn lambs by creating right ventricular outflow obstruction and an atrial septal defect. Oxygen saturation was reduced to 65-74% for 2 wk. Eight lambs served as normoxemic controls. beta-receptor density (Bmax) and ligand affinity (KD) were determined with the radio-ligand [125I]iodocyanopindolol and adenylate cyclase activity determined during stimulation with isoproterenol, sodium fluoride (NaF), and forskolin. During chronic hypoxemia, Bmax decreased 45% (hypoxemic, 180.6 +/- 31.5 vs. control, 330.5 +/- 60.1 fmol/mg) in the left ventricle (exposed to hypoxemia alone) but was unchanged in the right ventricle (exposed to hypoxemia and pressure overload). KD was not different from control in either ventricle. Left ventricular isoproterenol-stimulated adenylate cyclase activity was decreased by 39% (30.0 +/- 4.3% increase vs. 44.1 +/- 9.5% increase) whereas right ventricular adenylate cyclase activity was unchanged. Stimulation of adenylate cyclase with NaF or forskolin was not different from control in either ventricle. Circulating epinephrine was increased fourfold whereas circulating and myocardial norepinephrine were unchanged. These data demonstrate a down-regulation of the left ventricular beta-adrenergic receptor/adenylate cyclase system during chronic hypoxemia secondary to an intracardiac right-to-left shunt.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arkesteijn C. L. A kinetic method for serum 5'-nucleotidase using stabilised glutamate dehydrogenase. J Clin Chem Clin Biochem. 1976 Mar;14(3):155–158. doi: 10.1515/cclm.1976.14.1-12.155. [DOI] [PubMed] [Google Scholar]
- Baumann G., Riess G., Erhardt W. D., Felix S. B., Ludwig L., Blümel G., Blömer H. Impaired beta-adrenergic stimulation in the uninvolved ventricle post-acute myocardial infarction: reversible defect due to excessive circulating catecholamine-induced decline in number and affinity of beta-receptors. Am Heart J. 1981 May;101(5):569–581. doi: 10.1016/0002-8703(81)90223-4. [DOI] [PubMed] [Google Scholar]
- Bernstein D., Teitel D., Sidi D., Heymann M. A., Rudolph A. M. Redistribution of regional blood flow and oxygen delivery in experimental cyanotic heart disease in newborn lambs. Pediatr Res. 1987 Oct;22(4):389–393. doi: 10.1203/00006450-198710000-00004. [DOI] [PubMed] [Google Scholar]
- Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
- Cuatrecasas P., Hollenberg M. D. Membrane receptors and hormone action. Adv Protein Chem. 1976;30:251–451. doi: 10.1016/s0065-3233(08)60481-7. [DOI] [PubMed] [Google Scholar]
- Cunningham W. L., Becker E. J., Kreuzer F. Catecholamines in plasma and urine at high altitude. J Appl Physiol. 1965 Jul;20(4):607–610. doi: 10.1152/jappl.1965.20.4.607. [DOI] [PubMed] [Google Scholar]
- Downing S. E., Gardner T. H., Rocamora J. M. Adrenergic support of cardiac function during hypoxia in the newborn lamb. Am J Physiol. 1969 Sep;217(3):728–735. doi: 10.1152/ajplegacy.1969.217.3.728. [DOI] [PubMed] [Google Scholar]
- Fowler M. B., Laser J. A., Hopkins G. L., Minobe W., Bristow M. R. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. 1986 Dec;74(6):1290–1302. doi: 10.1161/01.cir.74.6.1290. [DOI] [PubMed] [Google Scholar]
- Graham T. P., Jr, Erath H. G., Jr, Boucek R. J., Jr, Boerth R. C. Left ventricular function in cyanotic congenital heart disease. Am J Cardiol. 1980 Jun;45(6):1231–1236. doi: 10.1016/0002-9149(80)90483-x. [DOI] [PubMed] [Google Scholar]
- Hedner T., Bergman B., Holmgren M. Adrenal catecholamines during and following hypoxia in neonatal rats. Med Biol. 1980 Aug;58(4):228–231. [PubMed] [Google Scholar]
- Jarmakani J. M., Graham T. P., Jr, Canent R. V., Jr, Jewett P. H. Left heart function in children with tetralogy of Fallot before and after palliative or corrective surgery. Circulation. 1972 Sep;46(3):478–490. doi: 10.1161/01.cir.46.3.478. [DOI] [PubMed] [Google Scholar]
- Jarmakani J. M., Nakazawa M., Nagatomo T., Langer G. A. Effect of hypoxia on mechanical function in the neonatal mammalian heart. Am J Physiol. 1978 Nov;235(5):H469–H474. doi: 10.1152/ajpheart.1978.235.5.H469. [DOI] [PubMed] [Google Scholar]
- Klein A. H., Foley B., Foley T. P., MacDonald H. M., Fisher D. A. Thyroid function studies in cord blood from premature infants with and without RDS. J Pediatr. 1981 May;98(5):818–820. doi: 10.1016/s0022-3476(81)80856-6. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laks M. M., Morady F., Swan H. J. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog. Chest. 1973 Jul;64(1):75–78. doi: 10.1378/chest.64.1.75. [DOI] [PubMed] [Google Scholar]
- Light K. E., Dick T. E., Hughes M. J. Central and peripheral receptors in guinea-pigs exposed to simulated high altitude. Neuropharmacology. 1984 Feb;23(2A):189–195. doi: 10.1016/s0028-3908(84)80013-1. [DOI] [PubMed] [Google Scholar]
- Lister G., Pitt B. R. Cardiopulmonary interactions in the infant with congenital cardiac disease. Clin Chest Med. 1983 May;4(2):219–232. [PubMed] [Google Scholar]
- Maher J. T., Manchanda S. C., Cymerman A., Wolfe D. L., Hartley L. H. Cardiovascular responsiveness to beta-adrenergic stimulation and blockade in chronic hypoxia. Am J Physiol. 1975 Feb;228(2):477–481. doi: 10.1152/ajplegacy.1975.228.2.477. [DOI] [PubMed] [Google Scholar]
- Maisel A. S., Motulsky H. J., Insel P. A. Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science. 1985 Oct 11;230(4722):183–186. doi: 10.1126/science.2994229. [DOI] [PubMed] [Google Scholar]
- Moshang T., Jr, Chance K. H., Kaplan M. M., Utiger R. D., Takahashi O. Effects of hypoxia on thyroid function tests. J Pediatr. 1980 Oct;97(4):602–604. doi: 10.1016/s0022-3476(80)80019-9. [DOI] [PubMed] [Google Scholar]
- Mukherjee A., Wong T. M., Buja L. M., Lefkowitz R. J., Willerson J. T. Beta adrenergic and muscarinic cholinergic receptors in canine myocardium. Effects of ischemia. J Clin Invest. 1979 Nov;64(5):1423–1428. doi: 10.1172/JCI109600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padbury J. F., Klein A. H., Polk D. H., Lam R. W., Hobel C., Fisher D. A. Effect of thyroid status on lung and heart beta-adrenergic receptors in fetal and newborn sheep. Dev Pharmacol Ther. 1986;9(1):44–53. doi: 10.1159/000457075. [DOI] [PubMed] [Google Scholar]
- Redding R. A., Pereira C. Thyroid function in respiratory distress syndrome (RDS) of the newborn. Pediatrics. 1974 Oct;54(4):423–428. [PubMed] [Google Scholar]
- Rockson S. G., Homcy C. J., Quinn P., Manders W. T., Haber E., Vatner S. F. Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs. J Clin Invest. 1981 Feb;67(2):319–327. doi: 10.1172/JCI110038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Sibley D. R., Strasser R. H., Caron M. G., Lefkowitz R. J. Homologous desensitization of adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. J Biol Chem. 1985 Apr 10;260(7):3883–3886. [PubMed] [Google Scholar]
- Sidi D., Teitel D. F., Kuipers J. R., Heymann M. A., Rudolph A. M. Effect of beta-adrenergic receptor blockade on responses to acute hypoxemia in lambs. Pediatr Res. 1988 Feb;23(2):229–234. doi: 10.1203/00006450-198802000-00020. [DOI] [PubMed] [Google Scholar]
- Snavely M. D., Mahan L. C., O'Connor D. T., Insel P. A. Selective down-regulation of adrenergic receptor subtypes in tissues from rats with pheochromocytoma. Endocrinology. 1983 Jul;113(1):354–361. doi: 10.1210/endo-113-1-354. [DOI] [PubMed] [Google Scholar]
- Stadel J. M., De Lean A., Mullikin-Kilpatrick D., Sawyer D. D., Lefkowitz R. J. Catecholamine-induced desensitization in turkey erythrocytes: cAMP mediated impairment of high affinity agonist binding without alteration in receptor number. J Cyclic Nucleotide Res. 1981;7(1):37–47. [PubMed] [Google Scholar]
- Stadel J. M., Nambi P., Shorr R. G., Sawyer D. F., Caron M. G., Lefkowitz R. J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3173–3177. doi: 10.1073/pnas.80.11.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teitel D., Sidi D., Bernstein D., Heymann M. A., Rudolph A. M. Chronic hypoxemia in the newborn lamb: cardiovascular, hematopoietic, and growth adaptations. Pediatr Res. 1985 Oct;19(10):1004–1010. doi: 10.1203/00006450-198510000-00011. [DOI] [PubMed] [Google Scholar]
- Tse J., Powell J. R., Baste C. A., Priest R. E., Kuo J. F. Isoproterenol-induced cardiac hypertrophy: modifications in characteristics of beta-adrenergic receptor, adenylate cyclase, and ventricular contraction. Endocrinology. 1979 Jul;105(1):246–255. doi: 10.1210/endo-105-1-246. [DOI] [PubMed] [Google Scholar]
- Uhrmann S., Marks K. H., Maisels M. J., Friedman Z., Murray F., Kulin H. E., Kaplan M., Utiger R. Thyroid function in the preterm infant: a longitudinal assessment. J Pediatr. 1978 Jun;92(6):968–973. doi: 10.1016/s0022-3476(78)80379-5. [DOI] [PubMed] [Google Scholar]
- Vatner D. E., Homcy C. J., Sit S. P., Manders W. T., Vatner S. F. Effects of pressure overload, left ventricular hypertrophy on beta-adrenergic receptors, and responsiveness to catecholamines. J Clin Invest. 1984 May;73(5):1473–1482. doi: 10.1172/JCI111351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vatner D. E., Lavallee M., Amano J., Finizola A., Homcy C. J., Vatner S. F. Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res. 1985 Jul;57(1):55–64. doi: 10.1161/01.res.57.1.55. [DOI] [PubMed] [Google Scholar]
- Vatner D. E., Vatner S. F., Fujii A. M., Homcy C. J. Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest. 1985 Dec;76(6):2259–2264. doi: 10.1172/JCI112235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venter J. C. High efficiency coupling between beta-adrenergic receptors and cardiac contractility: direct evidence for "spare" beta-adrenergic receptors. Mol Pharmacol. 1979 Sep;16(2):429–440. [PubMed] [Google Scholar]
- Voelkel N. F., Hegstrand L., Reeves J. T., McMurty I. F., Molinoff P. B. Effects of hypoxia on density of beta-adrenergic receptors. J Appl Physiol Respir Environ Exerc Physiol. 1981 Feb;50(2):363–366. doi: 10.1152/jappl.1981.50.2.363. [DOI] [PubMed] [Google Scholar]
- Winter R. J., Dickinson K. E., Rudd R. M., Sever P. S. Tissue specific modulation of beta-adrenoceptor number in rats with chronic hypoxia with an attenuated response to down-regulation by salbutamol. Clin Sci (Lond) 1986 Feb;70(2):159–165. doi: 10.1042/cs0700159. [DOI] [PubMed] [Google Scholar]
