Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Jan;85(1):75–85. doi: 10.1172/JCI114436

Oxygen metabolites stimulate release of high-molecular-weight glycoconjugates by cell and organ cultures of rodent respiratory epithelium via an arachidonic acid-dependent mechanism.

K B Adler 1, W J Holden-Stauffer 1, J E Repine 1
PMCID: PMC296389  PMID: 2153154

Abstract

Several common pulmonary disorders characterized by mucus hypersecretion and airway obstruction may relate to increased levels of inhaled or endogenously generated oxidants (O2 metabolites) in the respiratory tract. We found that O2 metabolites stimulated release of high-molecular-weight glycoconjugates (HMG) by respiratory epithelial cells in vitro through a mechanism involving cyclooxygenase metabolism of arachidonic acid. Noncytolytic concentrations of chemically generated O2 metabolites (purine + xanthine oxidase) stimulated HMG release by cell and explant cultures of rodent airway epithelium, an effect which is inhibitable by coaddition of specific O2 metabolite scavengers or inhibitors of arachidonic acid metabolism. Addition of O2 metabolites to epithelial cells provoked production of PGF2a, an effect also inhibitable by coaddition of O2 metabolite scavengers or inhibitors of arachidonic acid metabolism. Finally, addition of exogenous PGF2a to cell cultures stimulated HMG release. We conclude that O2 metabolites increase release of respiratory HMG through a mechanism involving cyclooxygenase metabolism of arachidonic acid with production mainly of PGF2a. This mechanism may be fundamental to the pathogenesis of a variety of lung diseases associated with hypersecretion of mucus and/or other epithelial fluids, as well as a basic cellular response to increased oxidants.

Full text

PDF
75

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler K. B., Hendley D. D., Davis G. S. Bacteria associated with obstructive pulmonary disease elaborate extracellular products that stimulate mucin secretion by explants of guinea pig airways. Am J Pathol. 1986 Dec;125(3):501–514. [PMC free article] [PubMed] [Google Scholar]
  2. Adler K. B., Schwarz J. E., Anderson W. H., Welton A. F. Platelet activating factor stimulates secretion of mucin by explants of rodent airways in organ culture. Exp Lung Res. 1987;13(1):25–43. doi: 10.3109/01902148709064307. [DOI] [PubMed] [Google Scholar]
  3. Au A. M., Chan P. H., Fishman R. A. Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries. J Cell Biochem. 1985;27(4):449–453. doi: 10.1002/jcb.240270413. [DOI] [PubMed] [Google Scholar]
  4. Buckley B. J., Tanswell A. K., Freeman B. A. Liposome-mediated augmentation of catalase in alveolar type II cells protects against H2O2 injury. J Appl Physiol (1985) 1987 Jul;63(1):359–367. doi: 10.1152/jappl.1987.63.1.359. [DOI] [PubMed] [Google Scholar]
  5. Eling T. E., Danilowicz R. M., Henke D. C., Sivarajah K., Yankaskas J. R., Boucher R. C. Arachidonic acid metabolism by canine tracheal epithelial cells. Product formation and relationship to chloride secretion. J Biol Chem. 1986 Sep 25;261(27):12841–12849. [PubMed] [Google Scholar]
  6. Euler G. L., Abbey D. E., Hodgkin J. E., Magie A. R. Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total oxidants and nitrogen dioxide in California Seventh-Day Adventist residents. Arch Environ Health. 1988 Jul-Aug;43(4):279–285. doi: 10.1080/00039896.1988.10545950. [DOI] [PubMed] [Google Scholar]
  7. Fox R. B. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J Clin Invest. 1984 Oct;74(4):1456–1464. doi: 10.1172/JCI111558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
  9. Freeman B. A., Topolosky M. K., Crapo J. D. Hyperoxia increases oxygen radical production in rat lung homogenates. Arch Biochem Biophys. 1982 Jul;216(2):477–484. doi: 10.1016/0003-9861(82)90236-3. [DOI] [PubMed] [Google Scholar]
  10. Gormley I. P., Kowolik M. J., Cullen R. T. The chemiluminescent response of human phagocytic cells to mineral dusts. Br J Exp Pathol. 1985 Aug;66(4):409–416. [PMC free article] [PubMed] [Google Scholar]
  11. Gurtner G. H., Knoblauch A., Smith P. L., Sies H., Adkinson N. F. Oxidant- and lipid-induced pulmonary vasoconstriction mediated by arachidonic acid metabolites. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):949–954. doi: 10.1152/jappl.1983.55.3.949. [DOI] [PubMed] [Google Scholar]
  12. Hale W. B., Turner B., LaMont J. T. Oxygen radicals stimulate guinea pig gallbladder glycoprotein secretion in vitro. Am J Physiol. 1987 Nov;253(5 Pt 1):G627–G630. doi: 10.1152/ajpgi.1987.253.5.G627. [DOI] [PubMed] [Google Scholar]
  13. Hemler M. E., Cook H. W., Lands W. E. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys. 1979 Apr 1;193(2):340–345. doi: 10.1016/0003-9861(79)90038-9. [DOI] [PubMed] [Google Scholar]
  14. Jackson J. H., Schraufstatter I. U., Hyslop P. A., Vosbeck K., Sauerheber R., Weitzman S. A., Cochrane C. G. Role of oxidants in DNA damage. Hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke. J Clin Invest. 1987 Oct;80(4):1090–1095. doi: 10.1172/JCI113165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson H. G., McNee M. L., Braughler J. M. Inhibitors of metal catalyzed lipid peroxidation reactions inhibit mucus secretion and 15 HETE levels in canine trachea. Prostaglandins Leukot Med. 1987 Dec;30(2-3):123–132. doi: 10.1016/0262-1746(87)90142-9. [DOI] [PubMed] [Google Scholar]
  16. Johnson K. J., Fantone J. C., 3rd, Kaplan J., Ward P. A. In vivo damage of rat lungs by oxygen metabolites. J Clin Invest. 1981 Apr;67(4):983–993. doi: 10.1172/JCI110149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim K. C., Rearick J. I., Nettesheim P., Jetten A. M. Biochemical characterization of mucous glycoproteins synthesized and secreted by hamster tracheal epithelial cells in primary culture. J Biol Chem. 1985 Apr 10;260(7):4021–4027. [PubMed] [Google Scholar]
  18. Kim K. C., Wasano K., Niles R. M., Schuster J. E., Stone P. J., Brody J. S. Human neutrophil elastase releases cell surface mucins from primary cultures of hamster tracheal epithelial cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9304–9308. doi: 10.1073/pnas.84.24.9304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kontos H. A., Wei E. P., Povlishock J. T., Dietrich W. D., Magiera C. J., Ellis E. F. Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science. 1980 Sep 12;209(4462):1242–1245. doi: 10.1126/science.7403881. [DOI] [PubMed] [Google Scholar]
  20. Leikauf G. D., Driscoll K. E., Wey H. E. Ozone-induced augmentation of eicosanoid metabolism in epithelial cells from bovine trachea. Am Rev Respir Dis. 1988 Feb;137(2):435–442. doi: 10.1164/ajrccm/137.2.435. [DOI] [PubMed] [Google Scholar]
  21. Marom Z., Shelhamer J. H., Bach M. K., Morton D. R., Kaliner M. Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis. 1982 Sep;126(3):449–451. doi: 10.1164/arrd.1982.126.3.449. [DOI] [PubMed] [Google Scholar]
  22. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  23. McDonald R. J., Berger E. M., White C. W., White J. G., Freeman B. A., Repine J. E. Effect of superoxide dismutase encapsulated in liposomes or conjugated with polyethylene glycol on neutrophil bactericidal activity in vitro and bacterial clearance in vivo. Am Rev Respir Dis. 1985 Apr;131(4):633–637. doi: 10.1164/arrd.1985.131.4.633. [DOI] [PubMed] [Google Scholar]
  24. Phipps R. J., Denas S. M., Sielczak M. W., Wanner A. Effects of 0.5 ppm ozone on glycoprotein secretion, ion and water fluxes in sheep trachea. J Appl Physiol (1985) 1986 Mar;60(3):918–927. doi: 10.1152/jappl.1986.60.3.918. [DOI] [PubMed] [Google Scholar]
  25. Smith R. J., Bowman B. J., Iden S. S. Stimulation of the human neutrophil superoxide anion-generating system with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3- phosphorylcholine. Biochem Pharmacol. 1984 Apr 1;33(7):973–978. doi: 10.1016/0006-2952(84)90502-1. [DOI] [PubMed] [Google Scholar]
  26. Tate R. M., Morris H. G., Schroeder W. R., Repine J. E. Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. J Clin Invest. 1984 Aug;74(2):608–613. doi: 10.1172/JCI111458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tate R. M., Vanbenthuysen K. M., Shasby D. M., McMurtry I. F., Repine J. E. Oxygen-radical-mediated permeability edema and vasoconstriction in isolated perfused rabbit lungs. Am Rev Respir Dis. 1982 Nov;126(5):802–806. doi: 10.1164/arrd.1982.126.5.802. [DOI] [PubMed] [Google Scholar]
  28. Taylor L., Menconi M. J., Polgar P. The participation of hydroperoxides and oxygen radicals in the control of prostaglandin synthesis. J Biol Chem. 1983 Jun 10;258(11):6855–6857. [PubMed] [Google Scholar]
  29. Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
  30. Waud W. R., Brady F. O., Wiley R. D., Rajagopalan K. V. A new purification procedure for bovine milk xanthine oxidase: effect of proteolysis on the subunit structure. Arch Biochem Biophys. 1975 Aug;169(2):695–701. doi: 10.1016/0003-9861(75)90214-3. [DOI] [PubMed] [Google Scholar]
  31. Whitcutt M. J., Adler K. B., Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol. 1988 May;24(5):420–428. doi: 10.1007/BF02628493. [DOI] [PubMed] [Google Scholar]
  32. White C. W., Repine J. E. Pulmonary antioxidant defense mechanisms. Exp Lung Res. 1985;8(2-3):81–96. doi: 10.3109/01902148509057515. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES